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HHV-6 integrates its genome into telomeres of human

chromosomes. Integration can occur in somatic cells or

gametes, the latter leading to individuals harboring the HHV-6

genome in every cell. This condition is transmitted to

descendants and referred to as inherited chromosomally

integrated human herpesvirus 6 (iciHHV-6). Although

integration can occur in different chromosomes, it invariably

takes place in the telomere region. This integration mechanism

represents a way to maintain the virus genome during latency,

which is so far unique amongst human herpesviruses. Recent

work provides evidence that the integrated HHV-6 genome can

be mobilized from the host chromosome, resulting in the onset

of disease. Details on required structural determinants, putative

integration mechanisms and biological and medical

consequences of iciHHV-6 are discussed.
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Corresponding author: Flamand, Louis (louis.flamand@crchul.ulaval.ca)

Current Opinion in Virology 2014, 9:111–118

This review comes from a themed issue on Special Section:

Roseoloviruses

Edited by Laurie Krug

http://dx.doi.org/10.1016/j.coviro.2014.09.010

1879-6257/# 2014 Published by Elsevier B.V.

Introduction
The genomes of human herpesvirus 6A (HHV-6A) and

HHV-6B consist of a single unique segment (U)

(�145 kbp) flanked by identical direct repeats (DR)

(�9kbp) [1–4]. The DRs are flanked by pac1 and pac2

sequences that are involved in the cleavage and the

packaging of the HHV-6 genome (Figure 1) [5,6]. Adja-

cent to the pac2 sequences is an array of telomeric repeats

(TMR) that are identical to the human telomere

sequences (TTAGGG). In proximity to pac1 is a second

telomere array, consisting of TMR that are disrupted by

other repetitive sequences, termed imperfect TMR

(impTMR) [3,6]. Intriguingly, TMR are found in several

lymphotropic herpesviruses belonging to the alpha, beta
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and gammaherpesvirinae [1,3,7–12] as discussed in greater

detail below.

Although HHV-6A and HHV6B viral genome integration

occurs in several distinct chromosomes, it invariably takes

place within the telomeric region of the host chromo-

somes. The precise mechanism that facilitates integration

is still to be defined; however, the presence of TMR at the

ends of the viral genomes suggests that these sequences

are involved by directing integration into host telomeres.

A role for the U94 protein in HHV-6A and HHV-6B

integration has been proposed, but remains to be proven

experimentally. The relatively wide tropism of HHV-6A

and HHV-6B suggest that integration can take place in

many different cell types, including gametes. Integration

into gametes results in individuals carrying a copy of the

HHV-6 genome in every cell of their body. This condition

is referred to as inherited chromosomally integrated

HHV-6 (iciHHV-6) and is quite common as it is observed

in approximately 1% of the human population (50–70

million individuals) worldwide. iciHHV-6 should be dis-

tinguished from the commonly used term ciHHV-6 that

refers to the presence of integrated HHV-6 genomes,

regardless if this is inherited or not. Individuals with

iciHHV-6 will transmit the integrated HHV-6 genome

according to the Mendelian laws, meaning that 50% of the

descendants will inherit iciHHV-6. In this review, the

biology of viral integration, the possible medical con-

sequences associated with iciHHV-6 and priority research

areas will be discussed.

What is known about HHV-6 latency? Is
integration the default mechanism for genome
maintenance during latency for HHV-6?
One hallmark of all herpesviruses is that they not only

replicate in the infected host but also establish a lifelong

persistent infection termed latency. Latency is charac-

terized by the continued presence of the viral genome in

infected target cells but the absence of infectious virus

production. HHV-6 has been shown to establish a latent

infection in various cell types including early bone mar-

row progenitor cells [13], primary monocytes/macro-

phages [14], myeloid cell lines [15], an astrocytoma cell

line [16] and an oligodendrocyte cell line [17]. In most of

these cell types, HHV-6 genes involved in lytic replica-

tion are not express and the virus can reactivate,

suggesting that it is a quiescent rather than an abortive

infection. The target cells differ between HHV-6A and

HHV-6B, but more work needs to be done to define the

true latency reservoir of both viruses.
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Figure 1
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Schematic representation of the HHV-6 genome. The unique region (U)

of the HHV-6 genome (140 kbp) is flanked by two identical direct repeat

sequences (10–13 kbp) referred to as DRL and DRR. The DRs contain

pac1 and pac2 sequences, perfect (TMR) and imperfect (impTMR)

telomeric sequences (TMR) and several open reading frames (not

shown). The genome is not drawn to scale.
During latency, a limited number of transcripts are

expressed. Four latency-associated transcripts encoded

from the HHV-6 IE1/IE2 locus, are highly spliced and

only expressed in latently infected cells in vitro and in
vivo [18]. It has been proposed that these transcripts give

rise to three latency-associated proteins termed ORF99,
Figure 2
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ORF142, and ORF145; however no experimental evi-

dence that confirms their expression is available yet.

Furthermore, U94 has been shown to be expressed during

latency, even at higher levels compared to lytically

infected cells [19]. The U94 protein also blocks viral

gene expression in infected lymphocytes in culture

[19,20], suggesting that U94 is involved in the establish-

ment and/or maintenance of latency.

As mentioned above, HHV-6 has been shown to integrate

its genome into host telomeres of latently infected cells

(Figure 2). Integration of HHV-6 also occurs upon infec-

tion of various cell lines including JJhan and Molt-3 T-cells

[21��,22], the human embryonic kidney cell line HEK293

[21��,23]. Integration of HHV-6 is not a dead end, as virus

reactivation can be induced in cells that harbor the inte-

grated virus genome using the HDAC inhibitor trichostatin

A (TSA) or tetradecanoylphorbol-acetate (TPA) [14].

While most herpesviruses maintain their genome as a

circular episome in latently infected cells, no episomal

copies of the HHV-6 genome were detected [21��,22].

Since only the integrated form of the HHV-6 genome is

present during latency, it is likely that integration is the

default mechanism for genome maintenance in this phase
Individual with latently
infected cells

No gametes
carry ciHHV6

Half of gametes
carry ciHHV6

Embryo and adult carry
HHV-6 in the germ line
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 primary HHV-6 infection early in life, the virus infects somatic cells such

egrate its genome and establish latency in these cells. Some latently

 germ line. In addition, HHV-6 is able to infect germinal cells (lower panel).

t harbors the virus in the germ line. These individuals pass on iciHHV-6 to
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Figure 3
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Hypothetical models leading to HHV-6 genome integration into host chromosomes. (a) A model based on break-induced homologous recombination

(BIR) would allow invasion of 30 end of the chromosome into the viral genome at the DRR TMR, followed by stand displacement and copying of the viral
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of infection; however, further work needs to be done to

determine whether latency can be achieved without integ-

ration, i.e. as a viral episome, to decipher the integration

mechanism and to understand how the virus genome is

mobilized during reactivation.

What is the underlying mechanism of
integration? Which cellular and viral factors
are potentially involved in the process?
The termini of eukaryotic chromosomes consist of con-

served structures termed telomeres that protect the genetic

information from terminal deterioration. Vertebrate telo-

meres consist of 7–10 kb hexameric repeats (TTAGGG)n

that are associated with a number of proteins. During DNA

replication, the terminal portion of the telomeres is not

completely copied due to the end replication problem. To

counteract this shortening, certain cell types express the

telomerase complex, which extends the telomeres by the

addition TMR sequences to the terminus.

Intriguingly, the HHV-6A and HHV-6B genomes contain

TMR at their termini (Figure 1). The fact that HHV-6A

and HHV-6B integration invariably occurs in the telo-

meric region of human chromosomes, suggest that hom-

ologous recombination (HR) events between host and

viral TMR could facilitate integration.

Chromosome ends have a 30 single-stranded G-rich

(TTAGGG) overhang that is 30–500 nucleotides in

length [24–26]. To avoid recognition as double-stranded

DNA (dsDNA) break, the 30 protruding end folds back

and invades the duplex telomeric DNA to generate a T-

loop structure [27–29]. A total of six proteins referred to as

the shelterin complex, bind and assist with T-loop for-

mation, stabilize chromosomal ends and prevent DNA

damage responses [30]. Sequencing of the HHV-6 integ-

ration sites indicated that the DRR region of the viral

genome is fused to the chromosome [31��]. The pac2

region at this extremity is lost during the integration

process. In addition, the pac1 sequences at the other

end of the viral genome (DRL) are also lost and the viral

TMR are extended with TTAGGG repeats [31��].

One model for HHV-6 integration compatible with this

structure is based on the DNA repair mechanism referred

to as break-induced replication (BIR). BIR is a HR path-

way that facilitates the repair of DNA breaks that have

only one end, contributing to the repair of broken replica-

tion forks and allowing telomere lengthening in the

absence of telomerase. BIR has been described in various
( Figure 3 Legend Continued ) genome. The terminal pac1 sequence would

telomere sequences at the end. This integration process could occur indepen

its 30–50 exonuclease activity, U94 could process the ends of the viral geno

unfold. This would generate compatible ends that could facilitate annealing 

strands would be completed by cellular polymerases/ligases. The terminal p

used to restore telomere sequences at the end.
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organisms including viruses, bacteria, and eukaryotes

(reviewed in [32]). In the context of HHV-6 integration,

BIR could be initiated by invasion of the 30 single strand

chromosomal end into the dsDNA linear HHV-6 genome

at the TMR sites, followed by DNA synthesis that would

continue to the end of the viral genome (Figure 3a). Upon

cell replication and division, the 26–28 nucleotide pac1

sequences could erode until the TMR region is encoun-

tered. TMR could then serve as template for telomerase,

as recently reported [33]. It remains unknown which

cellular/viral proteins could participate in this BIR-de-

pendent HHV-6 integration. Considering that BIR is a

process that can occur independently of infection, one

would argue that viral proteins are dispensable. If HHV-6

integration occurs through BIR, other herpesviruses that

possess TMR could use the same mechanism to insert

their genome into telomeres of host chromosomes.

A second model for HHV-6 integration is based on the

putative integrase HHV-6 U94. U94 encodes a 490 amino

acid protein and is unique to HHV-6A and HHV-6B. It

has homology (24% identity) to the Adeno-Associated

parvovirus (AAV) Rep78/68, a non-structural protein that

is essential for AAV integration into chromosomes 19 [34–
36]. Besides the similarity, U94 contains the conserved

domains of Rep78/68 including the DNA binding and

endonuclease domain at the N-terminus as well as the

helicase and ATPase domains at the C-terminus [22].

Considering that Rep78/68 is essential for AAV integ-

ration and that U94 expression can complement an AAV

Rep78/68 deletion mutant [37] suggests that U94 may play

a role in HHV-6 integration. U94 possesses single-stranded

DNA binding activity [20,38,39] and interacts with the

TATA-binding protein [39]. Recent studies indicate that

U94 binds telomeric DNA sequences and behaves as a 30–
50 exonuclease (Trempe and Flamand, unpublished data).

A model for U94-dependent integration of HHV-6 into

human telomeres is proposed in Figure 3b. Through its

DNA-binding and exonuclease activities, U94 would inter-

act with the D-loop structure and remove the protected

invading chromosomal end. This would result in the dis-

ruption of the T-loop structure and the generation of a 30

recessed chromosome end. Simultaneously, U94 would

attack the HHV-6 genome from its extremities generating

a 50 overhang at the DRR that is complementary to that of

the chromosome. These strands would anneal and poly-

merases/ligases would fill and close the gaps. As described

for the BIR integration, the pac1 at the DRL end would be

lost by erosion followed by telomeric extension using the

viral TMR as template.
 be lost by erosion and the adjacent TMR could be used to restore

dently of viral proteins. (b) U94-dependent integration process. Through

me and the telomeric D-loop structure, causing the T-loop structure to

of the virus genome and the host chromosome. Upon annealing, the

ac1 sequence would be lost by erosion and the adjacent TMR could be

www.sciencedirect.com
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Do the HHV-6 telomeric repeats facilitate
integration into host telomeres? Are other
herpesviruses that harbor TMRs able to
integrate into the host genome?
As mentioned above, the HHV-6 genome harbors two

TMR arrays within the DR regions: the perfect TMR at

the right end and the imperfect TMR at the left end of

the DR (Figure 1). The number of TMRs varies from

15 to 180 copies in clinical isolates [3,6,9,40]. It has been

proposed that the TMR are involved in HHV-6 integ-

ration; however, no experimental evidence has been

published yet. Deletion of the TMR in the HHV-6

genome resulted in a virus that replicates comparable

to parental and revertant viruses (Wallaschek and Kaufer,

unpublished data), indicating that the TMR are dispen-

sable for lytic replication. Integration analyses of recom-

binant viruses that lack the TMRs are currently under

investigation.

Besides Marek’s disease virus (MDV) and HHV-6, a

number of other herpesviruses harbor TMRs [41]. Among

them are more than a dozen herpesviruses from the

Herpesviridae and Alloherpesviridae family. These include

members of the alphaherpesvirinae subfamily such as

MDV, herpesvirus of turkeys and duck enteritis virus,

the betaherpesviruses HHV-6A, HHV-6B and human

herpesvirus 7 (HHV-7) as well as the gammaherpesvirus

equine herpesvirus 2. Even the distantly related allo-

herpesviruses cyprinid herpesvirus 1–3 that infect var-

ious fish species including carp, gold fish and koi, harbor

TMR at both ends of their genome. The conserved

nature of the TMR in various herpesviruses suggests an

important function of those repeat sequences. Integ-

ration into host telomeres was so far only shown for

MDV, HHV-6A and HHV-6B [21��,23,42�], but it is

likely that also other herpesvirus containing TMRs in

their genome integrate their genetic material. It was

recently shown that the viral TMRs can facilitate integ-

ration of the virus genome into host telomeres using

MDV as a model for herpesvirus integration in vitro and

in vivo [42�]. As HHV-6A and HHV-6B also integrate

into telomeres it is very likely that the viral TMRs are

also involved in this process as proposed for the two

integration models above. The closely related HHV-7

has not been reported to integrate into host chromo-

somes so far. In contrast to HHV-6, HHV-7 has a very

narrow tropism as it infects only CD4 expressing cells

[43]. Since only few cells are latently infected with

HHV-7, it is very difficult to identify these cells to

determine the status of the virus genome within an

individual. Intriguingly, HHV-7 does not encode a

homologue of U94, suggesting that this protein might

be the decisive factor for integration.

Another open question is whether germ line integration

also occurs with herpesviruses other than HHV-6A and

HHV-6B. In case of HHV-7, the virus likely does not
www.sciencedirect.com 
infect gametes as they do not express CD4, providing a

possible explanation why germ line integration was not

observed for this herpesvirus so far. A recent report

demonstrated that tarsier monkeys carry an endogenous

herpesvirus closely related to HHV-6 in their genome

termed Tarsius syrichta roseolovirus 1 [44]. Unlike

HHV-6, the genome of the tarsier monkey virus con-

tains several mutations raising doubts that functional

viruses could reactivate from the integrated state.

Future studies should address if other herpesviruses

that harbor telomeres are also able to integrate into the

germ line.

Inherited chromosomally integrated HHV-6:
major issues and top research priorities
Undoubtedly, the ultimate question is whether iciHHV-

6 represents a risk factor in disease development. It is

now well established that the self-renewal potential of

cells is directly linked to telomere length and telomerase

activity [45,46]. It is also known that the shortest telo-

mere, not average telomere length, is critical for cell

viability and chromosome stability [47]. Recent work

by Huang et al. indicates that chromosomes carrying

integrated HHV-6 often have the shortest telomeres

[31��]. Once the number of telomeric repeated sequence

(TMR) is reduced to 13, chromosomal instability is

observed [48]. Several diseases are linked to telomere

dysfunctions and/or telomerase mutations such as hema-

topoietic dysfunction, pulmonary fibrosis, liver disease,

degenerative diseases and cancer [49–59]. Alterations

within telomeric regions are therefore a likely cause

for cellular dysfunctions linked to diseases. Intriguingly,

Pellett et al. reported that iciHHV-6 is 2.3� more fre-

quent (P < 0.001) in diseased (various diseases) individ-

uals relative to healthy ones [60]. One potential caveat of

this study is that the data was pooled from several small

independent studies. The fact that the prevalence of

iciHHV6+ individual varies between 0.2% and 2.9%

depending on the geographical regions and population

sampled (healthy versus diseased) likely affected the

outcome of the study. Sampling of a large cohort

(n = 50 000 subjects) of individuals aged over 40, when

the prevalence of disease is greater, and from a region

where the population is relatively homogenous (to mini-

mize confounding factors) would represent an almost

ideal way to address the clinical aspects of iciHHV-6.

Access to medical records is key for such analyses. By

comparing the prevalence of specific diseases in iciHHV-

6 versus non-iciHHV-6 individuals, risk factors could be

estimated. Once identified, more precise questions per-

taining to the mechanisms causing disease could be

addressed. In addition, integration of the virus in non-

iciHHV-6 patients during latency could also alter cellular

function of target cells such as T cells, monocytes,

neuroglial cells. This could also influence co-infections

with other pathogens or increase the risk of autoimmune

disease.
Current Opinion in Virology 2014, 9:111–118
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Another area worth investigating is the ability of HHV-6

to infect gametes. To facilitate incorporation into the

germ line, HHV-6 must infect gametes and integrate

its genome into a host chromosome. This integration

most likely occurs in an ovum or sperm progenitor cells,

thereby increasing the likelihood transferring the HHV-6

genome into an embryo. Intriguing work by the Hollsberg

group indicates that HHV-6 is present in sperm of healthy

males and that the virus can bind to sperm cells. This

binding mechanism would allow transport of the virus

along with the sperm cells to the ovum [61�]. Another

possibility is that HHV-6 can reactivate from infected

sperm cells and spread to a fertilized egg cell. Whether a

haploid chromosome content influences integration

remains unknown. Clearly more work on this subject is

needed to fully appreciate the initial steps leading to

iciHHV-6.

Lastly, the mechanism that allows mobilization of the

integrated HHV-6 genome, resulting in reactivation and

pathogenesis, remains a fundamental question. Recent

studies in vitro [21��] and in vivo [63�] provided some

evidence that integrated HHV-6 can indeed mobilize its

genome and reactivate. Two reports suggest that viral

excision could occur through the formation of T-circles

[31��,62]. These T-circles would arise from recombina-

tion events between HHV6 DR regions and result in the

generation of a full length circular viral genome contain-

ing a single DR. This genome would then serve as

template for rolling-circle replication of the virus genome,

resulting concatemeric viral DNA. Further convincing

evidence was recently provided by Endo et al. that

reported pathogenesis from reactivated iciHHV-6A in a

Japanese infant with X-SCID [64��]. The profound

immunosuppression observed in X-SCID was most likely

a key-contributing factor for the observed uncontrolled

viral replication. From these observations, two major

research priorities emerge. First, in the absence of safe

and highly effective anti-HHV-6 drugs, the development

of immunotherapeutic approaches to prevent/control

HHV-6 reactivation is warranted. HHV-6 specific T cells

recognizing peptides derived from the U11, U54 and IE1

proteins have recently been identified [65–68]. Whether

these could prevent HHV-6 reactivation and disease

should be addressed in a clinical setting. The second

research priority relates to the transplantation of organs

derived from iciHHV-6+ individuals. Even though almost

everyone is already infected with HHV-6, the burden of

latently infected cells is likely minimal compared to the

number of HHV-6-infected cells introduced upon trans-

fer of organs such as kidneys, livers or even bone marrow

cells from an iciHHV-6+ donor. Organs from iciHHV-6+

donors would represent an important reservoir of latently

infected cells, possibly reactivating considerable amounts

of HHV-6. In addition, cells of iciHHV-6 patients are

known to express viral RNAs in the absence of reactiva-

tion. Cells expressing HHV-6 proteins would be attacked
Current Opinion in Virology 2014, 9:111–118 
by the immune system, which could explain, at least in

part, idiopathic chronic organ rejection. Realizing that the

demand for organ exceeds organ donation, monitoring of

iciHHV-6 status of organ donors should be determined

prior transplantation to avoid adverse effects and ensure

proper diagnosis and treatment by the clinicians.

Conclusion
Initially considered an oddity among virologists, HHV-6

integration is now considered a part of the natural HHV-6

life cycle. Establishment of latency by integration of the

virus genome into host chromosomes allows HHV-6 to

minimize detection by immune effector cells, ensuring its

long-term persistence. It should be pointed out that

HHV-6 integration has so far been only observed in

iciHHV-6 individuals. The search for cells carrying inte-

grated HHV-6 from a non-iciHHV-6 is still ongoing.

Recent advances have started to unravel how these

viruses might excise themselves from the integrated

state. Although the processes leading to integration

remain elusive for the most part, the medical con-

sequences associated with iciHHV-6 are now starting

to be recognized as a risk factor for disease development.

Large-scale population studies and systemic monitoring

of iciHHV-6 status would provide conclusive answers to

the biological and medical consequences associated with

iciHHV-6.
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