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Human herpesvirus 6 (HHV-6) infections are typically mild and

in rare cases can result in encephalitis. A common theme

among all the herpesviruses, however, is the reactivation upon

immune suppression. HHV-6 commonly reactivates in

transplant recipients. No therapies are approved currently for

the treatment of these infections, although small studies and

individual case reports have reported intermittent success with

drugs such as cidofovir, ganciclovir, and foscarnet. In addition

to the current experimental therapies, many other compounds

have been reported to inhibit HHV-6 in cell culture with varying

degrees of efficacy. Recent advances in the development of

new small molecule inhibitors of HHV-6 will be reviewed with

regard to their efficacy and spectrum of antiviral activity. The

potential for new therapies for HHV-6 infections will also be

discussed, and they will likely arise from efforts to develop

broad spectrum antiviral therapies for DNA viruses.
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Introduction
Human herpesvirus 6 A (HHV-6A) and human herpes-

virus 6 B (HHV-6B) are members of the betaherpesvirus

subfamily, as is cytomegalovirus (CMV) and Human

Herpesvirus 7 (HHV-7). Primary infections with the

Roseoloviruses HHV-6A and HHV-6B typically occur

early in life with HHV-6B being the most common [1].

The two HHV-6 viruses are distinct entities and are

classified as different species [2,3]; they are associated

with different clinical manifestations, yet it is not always

feasible to distinguish the viruses in clinical studies so
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data from viruses are generally analyzed together and

reported simply as HHV-6 infections. Here, we will

specify the specific virus where possible and will simply

use the HHV-6 designation where it is not. Primary

infection with HHV-6B has been shown to be the cause

of exanthem subitum (roseola) in infants [4], and can also

result in an infectious mononucleosis-like illness in adults

[5]. Infections caused by HHV-6A and HHV-7 have not

been well characterized and are typically reported in the

transplant setting [6,7]. Serologic studies indicated that

most people become infected with HHV-6 by the age of

two, most likely through saliva transmission [8]. The

receptors for HHV-6A and HHV-6B have been identified

as CD46 and CD134, respectively [9,10]. This facilitates

entry into many cell types including CD4+ cells, CD8+

T-cells, natural killer cells, monocytes, epithelial cells,

and brain-derived cells [11].

The development of therapies for HHV-6 infections has

been limited because of the lack of unequivocal associ-

ation between infection and disease that warrants inter-

vention. Roseola infections are typically mild and do not

warrant therapy. Other infections caused by HHV-6 have

been incriminated in a variety of human illnesses; how-

ever, the lack of cause and effect has impeded drug

development and controlled studies of existing medi-

cations in order to establish value of treatment are want-

ing. In large part, such associations may be dependent

upon controlled clinical trials that establish the value of

therapies in targeted diseases. Diseases associated with

HHV-6 infection have included encephalitis and infec-

tions in immunocompromised host, particularly intersti-

tial pneumonitis [12]. In addition, infection has been

incriminated as a cause of multiple sclerosis, as has been

the case for numerous other viral agents [13]. Reactivation

of HHV-6 frequently occurs during immune suppression

and is seen in 50% of all bone marrow and 20–30% of solid

organ transplant recipients [7,14]. Two clinical studies

suggest a role of HHV-6 in contributing to morbidity in

hematopoietic stem cell transplant recipients. Specifically

the early reactivation with increasing viral load was associ-

ated with fever, skin rash, diarrhea, pulmonary compli-

cations, and neurologic disorders [15]. A second study

utilized prophylactic ganciclovir in a placebo-controlled

study that demonstrated drug administration decreased

the probability of skin rash, interstitial pneumonitis, diar-

rhea, and thrombatic microangiopathy (TMA) [16]. Diag-

nostic procedures and sequencing analyses have shown

that the viral genome can integrate within telomeric

regions of chromosomes in some individuals, although
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its significance remains unclear [17,18�]. While these stu-

dies do not define disease etiology, they provide potential

indications for the development of therapeutics for anti-

viral agents.

Methodologic assays
Several methodologies have been employed to detect

activity of small molecules against all of the betaherpes-

viruses and will be summarized specifically for HHV-6

infection. All isolates of HHV-6A and HHV-6B replicate

well in phytohemagglutinin-stimulated umbilical cord

blood lymphocytes and exhibit a prolonged replication

cycle characteristic of this subfamily [19]. Additional cell

lines that support viral replication have been identified

and are generally used in the evaluation of antiviral

activity. The first report of antiviral activity against GS

strain of HHV-6A was described in a T-lymphoblastoid

cell line (HSB-2) [20]. The Z29 strain of HHV-6B repli-

cates well in Molt-3 cells, and this line is most often used

in evaluating the efficacy of antiviral agents [21]. In all

cells, viral replication can be assessed by DNA hybridiz-

ation, quantitative PCR, and flow cytometry, but cyto-

pathology is also apparent in some cell lines [20,22�,23].

Molecules with antiviral activity against HHV-6
The susceptibility of HHV-6 to antiviral drugs seems to

be distinct from that of CMV, although CDV, PFA, and

GCV all appear to inhibit virus replication in vitro with

modest efficacy [20,24]. To summarize the activity of the

more commonly used compounds, the in vitro efficacy

from several manuscripts is shown in Table 1. Additional

effective agents are in various stages of development and

the most promising small molecules will be discussed in

detail below (Figure 1). Immunotherapeutic strategies

have also been reported for the therapy of HHV-6 infec-

tions but are outside the scope of this review [25].

Ganciclovir
The one molecule studied extensively for therapy of

putative HHV-6 infection is ganciclovir, a nucleoside

analog that was synthesized in the 1980s for the treatment

of CMV infection. This compound is phosphorylated by

the U69 kinase in HHV-6 and the active triphosphate
Table 1

Efficacy of selected antiviral drugs against HHV-6A and HHV-6B

EC50 for HHV-6A (mM)a

Meana Range 

foscarnet 23.4 6.7–53 

cidofovir 4.72 0.33–14 

cyclic cidofovir 2.9 0.79–6.3 

ganciclovir 17 2.0–25 

cyclopropavir 4.5 1.3–7 

brincidofovir 0.003 NA 

L BDCRB 2.8 NA 

a The mean of EC50 values are shown from the indicated publications alth
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metabolite inhibits the DNA polymerase. The activity of

ganciclovir in vitro is dependent upon the assay that has

been employed. Utilizing an immunofluorescence assay,

ganciclovir was reported to have a minimal level of in vitro
activity at >25 mM [20]. However, in a more sensitive

assay that utilized cord blood lymphocytes, Yoshida and

colleagues reported activity in the mM range [26]. In large

part, this limited activity against both viruses may be

related to the low level of phosphorylation by the U69

kinase, and, as a consequence, the reduced inhibition of

DNA polymerase by the active metabolite [27,28]. Resist-

ance to the drug maps both the U69 protein kinase as well

as the U38 DNA polymerase, and the mechanism of

action is thought to be similar to that against CMV [29,30].

Several clinical trials have suggested the value of ganci-

clovir, but from a very limited perspective [16,31–37]. Of

note, resistant virus has been detected in a number of

transplant patients and is not unexpected given the

modest efficacy of ganciclovir against this virus [38��,39].

With the development of the oral formulation of ganci-

clovir, valganciclovir, an alternative to intravenous

therapy exists and provides an opportunity for the per-

formance of controlled clinical trials with greater ease of

drug administration in those populations that tolerate

orally administered medications.

Foscarnet
Foscarnet is employed to treat CMV infections in the

immunocompromised host, particularly in the presence of

antiviral resistance to ganciclovir. This drug directly binds

the pyrophosphate binding site in the DNA polymerase

and inhibits the activity of this enzyme. It was among the

first drugs identified to have activity against HHV-6 repli-

cation in vitro at a level of approximately 25–50 mM, and it

is active against both viruses [20,40]. In clinical studies the

drug has been used alone and with other licensed drugs,

including ganciclovir and cidofovir for the treatment of

HHV-6 infections [33,35,37,41,42]. Notably, the electrolyte

imbalances resulting from therapy result in renal toxicity

that is a deterrent to its use. As would be anticipated from
EC50 for HHV6B (mM) Ref

Mean Range

50 22–86 [20,26,68]

6.5 2.3–13 [20,22�,26,47,53,60,68]

9 5.4–16 [20,26,47]

4.5 NA [20,26]

1.6 0.7–2.5 [22�,53]

0.007 NA [47]

9.7 NA [60]

ough not all of them report the efficacy of both HHV-6A and HHV-6B.

Current Opinion in Virology 2014, 9:148–153
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Figure 1
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its mechanism of action, resistance to foscarnet maps to the

DNA polymerase [43].

Cidofovir
Cidofovir is licensed for the therapy of CMV infections,

particularly in high-risk immunocompromised hosts.

Historically, the medication was used as an alternative

treatment to ganciclovir in AIDS patients with retinitis.

This acyclic nucleoside phosphonate analog is phos-

phorylated by cellular kinases to the diphosphate and

is incorporated into viral DNA by the viral DNA poly-

merase. With improved therapy of HIV infection, the

incidence of CMV retinitis is low. Cidofovir and cyclic

cidofovir inhibit the replication of both HHV-6A and

HHV-6B with EC50 values of 3–9 mM [20,22�]. There
Current Opinion in Virology 2014, 9:148–153 
are anecdotal reports suggesting that it may have some

utility in the treatment of HHV-6 infections either

alone or with other compounds and is plausible given

this drug is active against all the human herpesviruses

[33,42,44]. Drug resistance has been generated in the

laboratory and maps to the HHV-6 DNA polymerase,

namely the U38 gene [45].

Brincidofovir
The lipophilic derivative of cidofovir, brincidofovir or

CMX001, is the hexadecyloxypropyl-cidofovir molecule

[46]. It is a lipophilic prodrug of cidofovir that is highly

active against many human DNA viruses, including

HHV-6 and its mechanism of action is similar to that

of CDV. It is among the most active molecules that have
www.sciencedirect.com
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been tested against this virus with EC50 values of 3 and

7 nM for HHV-6A and HHV-6B, respectively [47]. This

molecule has been studied extensively in animal models

against a variety of DNA viral infections, and has superior

activity to cidofovir [48,49]; however, since there is no

animal model of HHV-6 infection, no similar data are

currently available. Furthermore, the drug was shown to

suppress CMV disease in hematopoietic cell transplant in

a phase 2 clinical trial, and a pivotal phase 3 clinical trial is

underway in hematopoietic stem cell transplant recipi-

ents [50]. Since the betaherpesviruses CMV and HHV-6

both exhibit similar levels of susceptibility to brincido-

fovir, the drug might be expected to suppress disease

from both viruses in this high risk population.

CMV423
CMV423 is a novel molecule with good activity against

HHV-6 (EC50 approximately 50 nM) [51]. It inhibits a

cellular protein tyrosine kinase that plays a critical role in

HHV-6 viral replication [52]. Since the compound inhi-

bits a cellular protein, the likelihood of advancement into

clinical trials is unclear because of potential host cell

toxicity.

Cyclopropavir and other
methylenecyclopropane analogs
Cyclopropavir is a methylenecyclopropane analog that is a

potent inhibitor of CMV and is also active in vitro against

HHV-6 infection with EC50 values of 1 and 6 mM for

HHV-6A and 6B [22�,53]. Its mechanism of action is

similar to ganciclovir in that it is phosphorylated by the

CMV UL97 kinase, but it also interferes with the normal

function of the UL97 kinase that is critical to the replica-

tion of CMV [54,55,56�,57]. In HHV-6 the UL97 homo-

log, U69, phosphorylates the drug thus, its mechanism of

action appears to parallel that of ganciclovir although with

superior efficacy against HHV-6 [58��].

Recently, similar methylenecyclopropane analogs have

been synthesized with ether and thioether substitutions

at the 6 position of the purine and these analogs have

superior activity to cyclopropavir [22�]. These are also

phosphorylated directly by the U69 kinase [58��]. The

mechanism of action of this series of compounds is more

complex than that of cyclopropavir because of the modi-

fication of the guanine as well as the absence of a 30

hydroxyl, which implies that it is likely an obligate chain

terminator (Figure 1).

Benzimidazole derivatives
Several benzimidazole analogs have been reported to

have antiviral activity against the human herpesviruses;

maribavir is an L benzimidazole and is a potent inhibitor

of CMV replication with submicromolar efficacy [59].

The molecule inhibits CMV UL97 kinase and is the

most specific protein kinase inhibitor that has been

identified to date [57]. Unfortunately, Phase III clinical
www.sciencedirect.com 
trials for the prevention of CMV infection in hemato-

poietic stem cell transplant recipients failed to demon-

strate efficacy and its further development is in doubt.

This molecule also inhibits the U69 protein kinase in

HHV-6, however its antiviral activity against HHV-6A

and HHV-6B in cell culture is very limited as compared to

CMV [60].

Another D benzimidazole analog, BDCRB (2-bromo-5,

6-dichloro-1-beta-D-ribofuranosylbenzimidazole), has a

completely different mechanism of action and is the first

described inhibitor of the CMV terminase [61]. While this

molecule exhibits limited antiviral activity against HHV-

6, the L analog of BDCRB is a potent inhibitor of HHV-6

with EC50 values of 2.8 and 9.7 mM for HHV-6A and

HHV-6B, respectively [60]. It is unknown whether this

compound targets the U69 kinase, terminase complex, or

other essential function, but the distinct structure activity

relationship of this series of compounds against HHV-6 is

clearly different from that of CMV and thus this series of

compounds holds promise.

Other molecules with activity against HHV-6 in
vitro
Artesunate molecules are licensed and have efficacy

against malaria and, to a much more limited extent,

CMV infection. The precise mechanism of action against

the DNA viruses is unknown and may not be specific. For

CMV infection, the EC50 is approximately 5.8 mM

[62,63]. Anecdotal reports have documented apparent

efficacy in a very few cases but clinical trials will be

required to assess the potential utility of this compound

[64,65]. Efficacy has also been reported against HHV-6A

with and EC50 value of 3.8 mM [66]. A single report

described the use of the drug in the treatment of a child

with HHV-6B myocarditis, yet it was unclear that the

artesunate therapy was related to the recovery of the

patient [67�].

Numerous other molecules have been reported to exhibit

antiviral activity against HHV-6 in cell culture. 3-Deaza-

HPMPA is active in the low mM range [20], however,

because of toxicity it will not be advanced into clinical

trials. Arylsulfone derivatives also have been reported to

exhibit activity with CMV EC50 values at the low micro-

molar level and this series warrants further investigation

[68]. Continued evaluation of new molecular entities will

likely be required to identify potent new molecules with

novel molecular targets.

Conclusions
At present, it is highly unlikely that any drug will be

developed specifically for the treatment of HHV-6 infec-

tions. The availability of molecules that inhibit HHV-6

will in all probability result from spin-offs of those drugs

synthesized to improved therapy of CMV infections of

humans. More importantly, it underscores the need for
Current Opinion in Virology 2014, 9:148–153
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safe and effective broad spectrum antiviral drugs that can

prevent disease in high risk populations not only from

CMV and HHV-6, but also from other DNA viruses such

as HHV-7, herpes simplex virus, Epstein-Barr virus,

varicella-zoster virus, BK virus, and adenovirus. As long

as the causative role of HHV-6 in diseases with significant

impact or morbidity is not established, the development

of specific therapeutics for this virus will remain a rela-

tively low priority. The focus on antiviral agents with a

broad spectrum antiviral activity that includes the roseo-

loviruses currently has the greatest potential to yield

effective therapies for these infections.
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