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Four human herpesviruses were discovered in a eight-year period between

1986 and 1994. This exciting era of virus discovery was driven in part by the

search for HIV and HIV-related diseases coupled with the development of

new molecular tools such as PCR, automated Sanger sequencing, and

subtractive hybridization. Three of these viruses, human herpesvirus 6A

(HHV-6A) and human herpesvirus 6B (HHV-6B), and human herpesvirus 7

(HHV-7), were initially cultured from peripheral blood mononuclear cells.

All three were found to be T lymphotropic viruses that were most closely

related to human cytomegalovirus (HCMV), placing them in the betaher-

pesvirus family. Given their tight biologic and genetic relationships and

clear etiologic link to roseola infantum, these viruses are now designated

Roseoloviruses. Human herpesvirus 8 (also known as Kaposi’s sarcoma

associated herpesvirus) was identified as a new member of the gammaher-

pesviruses, in the rhadinovirus genus. Given its clear link to HIV-related

malignancies, HHV-8 research exploded.

So began the struggle of the roseoloviruses for recognition and funding in the

competitive world of biomedical research. The rate of discovery of their

pathogenic potential has lagged compared to HHV-8 but great progress has

been made nonetheless. This special section on the Roseoloviruses is

intended to update the scientific community on the clinical impact, mol-

ecular virology, pathogenesis, and technological advancements in the field.

The collection of reviews is a tangible product of a recent National Institutes

of Health Workshop that brought roseolovirus experts together to discuss

the clinical and basic science priorities of the field, summarized in the

Perspective piece by Caserta et al. Each of these reviews highlights recent

findings that address important aspects of ‘roseolobiology’ and each provides

direction for further pursuits to fill-in specific gaps in knowledge.

Roseolovirus cytopathic effect is striking. Anyone who has witnessed the

ballooning, refractile cells upon infection will wonder at the power of these

viruses to cause such fundamental change in target cells. Krug and Pellett

present an overview of unique features of the roseoloviruses and explore the

genetic content of these viruses, pointing out the genes common to beta-

herpesviruses and those unique to the roseoloviruses. There are dozens of

viral genes with unknown functions that will certainly provide important

insight into the molecular basis of infection and disease. These gene

products, in addition to newly discovered miRNAs, are untapped resources

to understand how these viruses hijack reservoirs in the host such as T cells

and astrocytes. A forward-thinking review of ‘omics’ technologies by
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Moorman and Murphy provides a tantalizing look at how

systems-based approaches might be applied to rapidly

bring the molecular biology of roseoloviruses in line with

other human herpesviruses. They advocate for genomics

analysis of clinical isolates to establish reference strains and

identify disease-associated variants, genome-wide gene

expression studies to validate and classify the kinetics of

transcripts, and functional screens of tagged-ORF expres-

sion libraries and BAC-based recombinant ORF mutant

libraries coupled with proteomics to quickly ascribe gene

function and viral protein interactions.

The review by Frenkel et al. is a telling story of how the

roseoloviruses push the cell cycle into the G2/M phase

and remarkably harness the E2F transcription factor to

regulate the expression of the HHV-6A U27 and U79

genes. The unfolding mechanisms of virus subversion of

both innate and adaptive immune responses is told by

Amy Hudson. The roseolovirus repertoire includes gene

products that target cytokine signaling, T cell activation,

and downregulate MHC class I antigen presentation.

Defining the role of viral immune modulators and unchar-

acterized genes will require experimentation in the whole

animal to be realized. Horvat et al. summarize how the

CD46-trangenic and humanized mouse models and non-

human primate models recapitulate different aspects of

roseolovirus disease in humans.

One striking feature of HHV-6A and HHV-6B is their

ability to integrate into the telomeres of the human

chromosome, in some cases resulting in heritable trans-

mission of the viruses. Approximately 1% of the popu-

lation harbors germline integrated HHV-6A or HHV-6B;

chromosomal integration is a steadfast aspect of HHV-6A

and HHV-6B biology. The review by Kaufer and Fla-

mand describes recent advances in cell culture systems

that allow researchers to examine how HHV-6A or HHV-6B

integrate and excise themselves from host chromosomes. A

pressing issue for the integration of HHV-6A and HHV-6B

is determining if this is a requisite part of the virus lifecycle,

potentially representing a novel mechanism for latency.

Clearly, the clinical consequences of an integrated herpes-

virus, whether in a few somatic cells or integrated into every

cell of a human, requires further investigation.

Roseola infantum (Exanthema subitum) is a hallmark child-

hood illness comprised of a high fever lasting 1–5 days in

duration that may be followed by a maculopapular rash.

Tesini et al. summarize a series of clinical studies indicating

that serious complications, such as febrile seizures and

febrile seizure epilepticus, can arise from primary infection

with HHV-6B and HHV-7. Human cytomegalovirus has

long been associated with transplant complications, in part

due to reactivation upon immunosuppression. As

described by Hill and Zerr, allogeneic hematopoietic stem

cell transplant patients, and in particular cord blood stem
www.sciencedirect.com 
cell recipients, are at higher risk of HHV-6B reactivation

associated with limbic encephalitis and neurocognitive

disorder. A balanced review of the current literature

regarding the association of the neurotropic roseoloviruses

with multiple sclerosis (MS) is presented by Leibovitch

and Jacobsen. Evidence for both direct roles of the virus

and virus-driven immune responses in MS pathology are

discussed.

Diagnosis of primary roseolovirus infection and CNS-

related complications arising from both primary infections

and reactivation in immunosuppressed transplant

patients would benefit from rapid diagnostics and less

toxic antiviral drugs. Hill et al. introduce the use of digital

PCR to distinguish single integrated viral genomes per

cell in patients with chromosomal integration of HHV-6A

or HHV-6B (ciHHV-6) from a high copy number of virus

in a blood sample due to viral reactivation. This review

also highlights the importance of using other molecular

tools such as quantitative reverse-transcript PCR of

mRNA to distinguish latent from active, lytic infections.

Clinicians need safe and effective therapies to control

roseolovirus infection and limit viral pathogenesis. The

efficacy of current nucleoside analogs and of drugs in the

developmental pipeline is reviewed by Prichard and

Whitley. The authors point out that there is little fiscal

incentive for the pharmaceutical industry to dedicate

research and development to the roseoloviruses without

clear disease etiology. However, Koch’s postulates are

difficult to fulfill for ubiquitious viruses. In a frustrating

case of ‘Catch-22’, clinical trials with roseolovirus-

specific drug therapies are key to demonstrating that

virus infection leads to the resolution of a suspected

roseolovirus-associated disease. Immune therapy shows

real promise in the treatment of reactivation-associated

disease in transplant recipients. Becerra et al. define the

predominant HHV-6A and HHV-6B epitopes that CD4+

T cells and CD8+ T cells recognize and explain how

these T cells can be expanded in culture for autologous

transfer and protection.

These last several years have produced a collection of

new data, technologies, and ideas that generates import-

ant new questions about roseolovirus biology. Can we

treat reactivation and nervous system disease with novel

antivirals and immune therapy? Does an integrated virus

place a patient at risk for disease? Is integration a part of

the virus lifecycle? What are the functions of uncharac-

terized gene products during infection, and how do they

impact pathogenesis? Can we confirm or discount roseo-

lovirus causality or contributions to rare or complex dis-

eases? We direct the reader to the focused reviews on the

molecular and clinical aspects of HHV-6A, HHV-6B, and

HHV-7 in this special section on the Roseoloviruses. It is

time to stop and smell the roses.
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Human herpesviruses 6A, 6B, and 7 (HHV-6A, HHV-6B, and

HHV-7) are classified within the roseolovirus genus of the

betaherpesvirus subfamily. Most humans likely harbor at least

two of these large DNA viruses, and 1% of humans harbor

germline chromosomally integrated (ci) HHV-6A or HHV-6B

genomes. Differences at the genetic level manifest as distinct

biologic properties during infection and disease. We provide a

brief synopsis of roseolovirus replication and highlight the

unique properties of their lifecycle and what is known about the

viral gene products that mediate these functions. In the nearly

30 years since their discovery, we have only begun to unlock

the molecular strategies these highly evolved pathogens

employ to establish and maintain chronic infections in humans.
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The aims of this review are to provide an overview of

roseolovirus molecular biology and highlight recent

advances in our understanding of the molecular basis

of the virus lifecycle, which in turn inform our under-

standing of pathogenesis, and illuminate paths to diag-

nosis, treatment, and prevention.

Roseoloviruses: what are they?
Human herpesviruses 6A, 6B, and 7 (HHV-6A, HHV-

6B, and HHV-7) are the only formally recognized

members of genus Roseolovirinae within order Herpes-
virales, family Herpesviridae, and subfamily Betaherpes-
virales (Figure 1) (historical references are available in

[1,2]). HHV-6A and HHV-6B were formerly described

as variants, but are now formally classified as distinct

virus species by the International Committee on Virus

Taxonomy [3]. Roseoloviruses share numerous genetic

and biologic properties with human cytomegalovirus
Current Opinion in Virology 2014, 9:170–177 
(also a betaherpesvirus), yet have distinct genes and

disease associations (Tables 1 and 2). The human

roseoloviruses are contemporary representatives of an

ancient lineage of herpesviruses that cospeciated with

their hosts. Antibodies against HHV-6 have been

detected in several species of Old and New World

monkeys, suggesting the presence of viruses related

to HHV-6 in these animals [4]. Consistent with this,

relatives of HHV-6 and HHV-7 have been detected by

PCR in chimpanzees, other great apes, and pig-tailed

macaques [5–7].

Roseoloviruses and human health
HHV-6B is the most common cause of roseola infantum

(exanthem subitum) and related febrile rash illnesses that

often accompany primary infection in early childhood [8];

this can also be caused by HHV-7. HHV-6B and HHV-7

have also been associated with febrile seizures in young

children. Immune suppressed hemopoietic stem cell

transplant recipients can experience limbic encephalitis

and other mental disorders during HHV-6B reactivations

[9]. HHV-6A has been associated with Hashimoto’s

thyroiditis [10] and neurological disorders, including

multiple sclerosis, but proof of causality is incomplete

[11].

A striking feature of roseoloviruses is the presence of

mammalian telomeric sequences at the ends of the virus

genome [12,13��,14]. Approximately 1% of the human

population world-wide harbors inherited chromosomally

integrated (ci) HHV-6A and HHV-6B. Germline integ-

ration may be a byproduct of the use of integration as a

hypothesized mechanism for establishing latency in

somatic cells, with virus infection of spermatocytes lead-

ing to occasional germline transmission. The health

effects of ciHHV-6 have not been elucidated.

Roseolovirus genomes and genes
Roseoloviruses genomes consist of a long unique region

(U) bracketed by a pair of direct repeats (DR) (Figure 2).

Roseolovirus genomes have heterogeneous and perfect

arrays of mammalian telomeric repeats at the left and

right ends of the DR elements, respectively, and con-

sequently at the left and right genomic termini. At least

for HHV-6B, genomes of wild viruses can be several kb

longer than those of laboratory-adapted strains, due to

repetitive sequences in the DR that are lost upon passage

in cultured cells. Roseolovirus genomes are approxi-

mately 65–90 kb shorter than the 235 kb HCMV genome.

The origins of lytic genome replication (oriLyt) are

located between U41 and U42, and are structurally similar

to oriLyts of alphaherpesviruses.
www.sciencedirect.com
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Table 1

Genetic and biological properties of human roseoloviruses and HCMV

HHV-6A HHV-6B

Commonly used
strains

U1102, GS Z29, HST

Length of wild 
genomes ? ~170 kb

Length of passaged 
genomes 159 kb 159-162 kb

genes encoding 
unique proteins ~102 ~97

miRNAs 4 predicted 4

Replication

slow,

ballooning, refractile cytopathic

origin-binding protein for initiation of D

Cell surface receptor CD46 CD134

Cell culture tropism

umbilical cord blood lymphoc
peripheral blood mononuclea

T cell lines:
SupT-1, HSB2, J 

JAHN

T cell lines:
Molt-3, Mt -4, SupT -1

productive 
replication in 
astrocytes

low-level persistence
in astrocytes

Unique features integration into host telomeres

Major disease 
associations

Hashimoto’s 
thyroiditis exanthem

febrile seizures/ s

transplant 
complications

post-transplant reactivation-associate
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Dendrogram showing relationships among the human herpesviruses,

based on sequences of the conserved protein, gB.
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HHV-6A and HHV-6B are �90% identical across their

genomes, with �95% identity across the herpesvirus core

genes. Regions in the vicinity of the genomic termini are

less conserved, with as little as 50% identity in the region

that encodes the major immediate early transactivators

[15]. While its overall organization and gene content are

similar to those of HHV-6A and HHV-6B, the HHV-7

genome is shorter and more compactly arranged across its

length, with many genes being 5–10% shorter than their

HHV-6 counterparts. In intrastrain comparisons, roseolo-

virus genomes are typically �99.9% identical, except for

pockets of elevated heterogeneity.

The core herpesvirus genes (43 genes conserved among

members of the Herpesviridae) are clustered across the

central portion of the genomes in an arrangement colinear

with the core genes in HCMV and other betaherpesviruses.
HHV-7 HCMV
JI, RK, SB, 

UCL-1
AD169, Towne, Merlin, 

TB40E

? 236 kb

145 kb ~230 kb

~86 ~165

unknown 16

 extended

 effect
cytomegaly, nuclear 
and cytoplasmic 

inclusions

NA replication

CD4 EGFR, Integrins

ytes
r cells

monocyte-
macrophages

T cell lines:
SupT-1 CD34+ hematopoietic 

cells

 endothelial and
epithelial cells,

fibroblasts

 subitum congenital birth defects

tatus epilepticus
transplant 

complications

retinitis

hepatitisd encephalitis 
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Table 2

Genes unique to roseoloviruses

Functiona Roseolovirus

ORF

%S with

HHV-6Ab
%I with

HHV-6Ac
%S with

HHV-7

%I with

HHV-7

Roseolovirus specific genes

U13 93.4 92.5 44.9 35.7

U15EX1 91.4 86.7 76.4 67.9

U15EX2 100 95.8 83.3 75

U15EX3 96.7 91.7 82 75.4

Glycoprotein U20 95.6 95.6 31.8 22.2

Downregulation of MHC class I U21 91 89.8 42.8 31.6

Glycoprotein U23 94.6 94.1 26.9 20.9

U24 88.3 82.7 46.2 31.2

U24A 94.7 91.2 40.3 28.1

U26 93.8 92.9 60.5 47.4

OX-2 homology, glycoprotein U85 93.1 91.7 46.9 36.8

IE-A (IE1), transactivator U90EX1 73.7 68.4 42.8 35.7

U90EX2 70.3 67.2 67.1 57.1

U90EX3 76.7 71.5 32.9 25.2

IE-A U91EX1 67.8 57.1 33.3 25

U91EX2 69.2 67.9 45.6 40

Spliced envelope glycoprotein;

HHV-6 gp82-gp105, HHV-7 gp65

U100EX1 78.1 73.4 27.2 19.7

U100EX2 84.9 81.7 53.8 38.7

U100EX3 82.9 79.3 40.9 32.7

U100EX4 96 88 44 40

U100EX5 88.6 80 34.3 28.6

U100EX6 91.9 91.9 48.6 37.8

U100EX7 88.7 83 35.3 27.4

U100EX8 100 100

U100EX9 92.8 90.5 35.7 23.8

U100EX10 83.9 76.5 24 13.3

HHV-6 specific genes

DR3 87 86.4

U6 97.1 97.1

U9 94.2 94.2

Glycoprotein U22 91.2 89.6

Intercrine cytokine U83 87.6 85.6

Parvovirus rep homolog U94 98.4 97.6

HHV-6A gene

U78

HHV-6B genes

B3, B4, B5, B6, B7, B8

a Implied functions of homologous genes or experimental validation.
b Percentage of amino acid similarity between homologs in comparison to HHV-6B strain Z29.
c Percentage of amino acid identity between homologs in comparison to HHV-6B strain Z29.
In contrast to HCMV and most other betaherpesviruses,

the roseoloviruses, along with elephant endotheliotropic

herpesviruses, encode homologs (roseolovirus gene U73)

of the origin of DNA replication binding protein (OBP)

encoded by all alphaherpesviruses. Most of the genes

shared only among betaherpesviruses  or unique to one or

more roseoloviruses lie in or near the DR, or between

conserved gene blocks (Table 2 and Figure 2).

HHV-6B expresses several small RNAs of unknown

function, including some that map to oriLyt and micro-

RNAs that map to the DR3/B1 and B2 immediate early

gene locus in DR. These miRNAs are conserved in HHV-

6A, and one is an ortholog of human miRNA miR-582-5p

[16��].
Current Opinion in Virology 2014, 9:170–177 
Major functions of many roseolovirus genes are known

only by inference from known functions of their homologs

in HCMV or other herpesviruses. Most virion proteins are

likely to have significant biological roles that go beyond

structural, such as tegument proteins that modify host cell

activities before de novo viral gene expression begins.

Only a handful of genes unique to roseoloviruses have

been studied functionally. These include transactivators

encoded by DR6 and U3, the U94 parvovirus rep gene

homolog, immunoevasins encoded by U21, a nonessential

Golgi-localizing nonstructural glycoprotein encoded by

U23 [17], and the gQ1 and gQ2 glycoproteins.

Major research priorities include assessment of genome

sequences and genetic variation of wild viruses, and
www.sciencedirect.com
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Figure 2
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Genomic and genetic architectures of the human roseoloviruses.

On the basis of information from [15,63–67].
identification of the functions of genes unique to roseo-

loviruses. A bacterial artificial chromosome (BAC) system

has enabled targeted genetic analysis for HHV-6A [18];

analogous systems are needed for HHV-6B and HHV-7.

Productive replication
Roseolovirus tropism: beyond T cells

The human roseoloviruses were discovered on the basis

of their lytic replication activity in cultured PBMCs.

Some strains have adapted to growth in specific T cell

lines and are commonly used for laboratory studies. Other

cell types such as monocytes, dendritic cells, astrocytes,

and glial cells are permissive for infection. HHV6A and

HHV-6B can bind to the sperm acrosome, providing a

possible route to germline integration [19]. The ability of

HHV-6A and HHV-6B to infect olfactory-ensheathing

glial cells that are present in the nasal cavity may provide

a route to the central nervous system [20].

Mechanisms of attachment and entry are important deter-

minants of cell tropism and latency reservoirs in the host.

Each roseolovirus has a distinct entry receptor: CD46 for

HHV-6A [21], CD134 for HHV-6B [22�], and CD4 for

HHV-7 [23]. Receptors are targets for neutralization [24]

and can be used to create receptor-transgenic animal

models that support infection [25�]. The essential com-

ponents for membrane fusion by HHV-6A and HHV-6B

are gB and the gH/gL/gQ1/gQ2 complex [26,27,28�]. gQ2

and gM are essential for virus production of HHV-6A

since virus stocks could not be generated from BACs with
www.sciencedirect.com 
disruptions in these ORFs [28�,29]. The degree of func-

tional homology between roseolovirus genes can be

examined in transcomplementation assays and by gene

substitutions in the HHV-6A BAC. For instance, the

HHV-6B gH gene can functionally replace HHV-6A

gH for replication [30].

De novo gene expression and productive replication

Roseolovirus lytic gene expression follows the general

herpesvirus paradigm: immediate early genes are tran-

scribed in the absence of new protein synthesis, expres-

sion of early genes is dependent on prior synthesis or

immediate early proteins, and late genes are expressed at

high levels upon viral DNA replication. Approximately

10 genes have spliced transcripts (some have multiple

spliced isoforms), and some transcripts are kinetically

regulated. Roseolovirus major IE genes are spliced and

have promoters that can be highly active in T cells.

Roseoloviruses diverge from most betaherpesviruses in

their mechanism of initiating viral DNA replication.

Their homologs of the alphaherpesvirus origin binding

protein bind to, and presumably facilitate unwinding of

the origin of lytic replication to initiate viral DNA syn-

thesis [31]. The OBPs of HHV-6B and HHV-7 have slight

differences in preferential binding sites that may explain

a lack of complete reciprocity between HHV-6B and

HHV-7 in transient oriLyt replication assays.

Information about HHV-6 virion assembly and egress

is sparse. An interesting feature of HHV-6A virion
Current Opinion in Virology 2014, 9:170–177
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envelopes is the presence of ganglioside GM1, a com-

ponent of lipid rafts [32]. Along with other evidence, this

suggests that virions may assemble via lipid rafts. Envel-

opment and egress are via a cellular CD63-associated

exosomal pathway [33].

Latency and reactivation
Gene expression during latency

Roseolovirus latency is poorly defined in molecular terms.

CD34-positive hematopoietic cells are a site of HHV-6

latency, and circulating lymphocytes positive for HHV-7

DNA but not for lytic gene transcripts have been

detected. Latency associated transcripts have been ident-

ified in two loci: antisense to the major IE locus, with

splicing patterns reminiscent of an HCMV latency tran-

script [34], and from the U94 gene [35]. No laboratory has

reported detection of both of these transcripts.

Integration

One of the most unique and biologically intriguing

aspects of HHV-6A and HHV-6B is their integration into

the germline of some humans (�1%), which can result in

inherited transmission among families [14]. All three

human roseoloviruses contain mammalian telomeric

sequences at their genomic termini, and telomeres are

the site of integration of HHV-6A and HHV-6B in

patients with chromosomally integrated HHV-6

[36,37��]. Telomeric integration occurs in infected cul-

tured Jjhan and HEK-293 cells, establishing a system for

mapping and characterizing the mechanistic processes of

integration. The efficiency of integration in cultured cells

has led to the hypothesis that chromosomal integration is

a normal part of HHV-6 latency.

The U94 gene of HHV-6A and HHV-6B is a homolog of

the parvovirus Rep gene, an integrase with single-

stranded and double-stranded DNA binding properties.

Cytomegaloviruses of rats [38] and bats [39] encode U94

homologs, indicating that the gene may have been

acquired prior to the divergence of roseoloviruses and

cytomegaloviruses. HHV-6 U94 binds ssDNA [40] and its

ectopic expression inhibits betaherpesvirus replication

[41] and impairs lymphatic endothelial cell angiogenesis

[42]. Given its homology with the parvovirus integrase,

U94 is hypothesized to promote integration and excision

of HHV-6A and HHV-6B, either by host-mediated base

excision repair or by exonuclease strand invasion [14].

The transcriptome of ciHHV-6 cells has not been

reported, but spliced U90 transcripts have been detected

in B cells harboring integrated HHV-6 [43�]. Genome-

wide analyses of viral and cellular gene expression are

needed in individuals with ciHHV-6 and in ciHHV-6 cell

culture systems.

Reactivation

Uncontrolled or aberrant primary infection and HHV-6

reactivation are associated with neurological syndromes
Current Opinion in Virology 2014, 9:170–177 
and transplant failure. Very little is known about the

molecular basis of reactivation. Mitogen stimulation of

PBMCs leads to reactivation and enables infection of T

cell lines. Lytic replication can also be stimulated by

apoptosis [44]. If integration is a mechanism of latency, a

functional virus genome must be excised from telomeres

in order to reactivate full lytic infection. HEK293 cells

with integrated HHV-6A can produce viral genome con-

catamers upon treatment with the histone deacetylase

inhibitor trichostatin A [36]. Huang et al. [43�] noted that

the telomeres attached to integrated HHV-6 genomes are

frequently shortened and associated with detection of

circular viral genomes. Such short, unstable telomeres are

thought to facilitate excision of viral genomes via telo-

mere-loops within the viral genome [43�]. Interestingly,

Chlamydia trachomatis drives reactivation of ciHHV-6 and

transient shortening of telomere ends [45]; the signaling

pathways and mechanism of excision remain to be

defined.

Virus–host interactions
All herpesviruses manipulate host cell processes to

promote replication. Roseoloviruses push the cell cycle

into G2/M, presumably to ramp up cellular processes that

promote DNA replication [46]. Virally induced degra-

dation of Rb and activation of E2F1 further benefits

HHV-6A and HHV-6B by enhancing the expression of

some lytic genes [47]. Many roseolovirus gene products

inhibit both innate immune responses (U20, IE1) and

adaptive immune responses (U21), and interfere with cell

death (U19, U20, DR6) and T cell signaling (U21, U54)

[48]. Functions should not be assumed to be conserved

among all roseolovirus homologs. Virus-specific differ-

ences in gene function such as U54 modulation of IL-2

signaling, the chemotactic properties of the roseolovirus

U83 chemokines, and IE1 inhibition of interferon stimu-

lated genes have been noted [49–51]. BAC-based recom-

binant viruses will facilitate examination of gene function

in the context of infection.

Roseoloviruses impact cytokine profiles of cultured cells

[52,53]. Cytokine dysregulation also occurs in patients

undergoing acute illness associated with primary infec-

tion [54–56] and reactivation [57], and in animal models of

HHV-6 infection [25�,58]. The viral gene products that

induce these changes in host signaling are not known.

Inactivated virions induce an interferon-lambda 1 (IL-29)

response in dendritic cells that might skew T cell

responses to infection [59]. The host immune response

may play a large role in the immune pathology of reacti-

vation-associated diseases and facilitate roseolovirus

transit across the blood brain barrier [60]. In addition,

HHV-6B reactivation might be triggered in response to

pro-inflammatory cytokines such as TNF-alpha and

immunosuppression with corticosteroids. Such a mech-

anism might contribute to the frequent detection of

HHV-6B reactivation in patients diagnosed with Drug
www.sciencedirect.com
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Reaction with Eosinophilia and Systemic Symptom

(DRESS), a potential fatal syndrome initiated by adverse

drug reactions [61,62].

Understanding the functional changes described above

will be enhanced by deep analysis of the effects of

roseolovirus infection on host cell transcription, trans-

lation, and export of gene products.

Research priorities
Understanding of the molecular virology of roseoloviruses

lags behind that for all other human herpesviruses. Un-

derstanding the genetic content of roseoloviruses has not

been extended far beyond basic sequence analysis of

laboratory-adapted strains. Modern methods of DNA

sequencing need to be applied to understanding the

sequence composition of wild, uncultured roseolovirus

genomes, as well as interhost and intrahost sequence

variation at the genome level in immune competent

and immune compromised individuals. Among other

things, such genetic analyses are necessary to ensure that

animal studies and other experiments are done with

viruses that appropriately represent wild viruses. Func-

tional analysis of the genes unique to roseoloviruses and

betaherpesviruses will provide information as to how

these viruses have adapted to their specific and special-

ized niches. Genetic approaches using BAC-based recom-

bination strategies are critical to identify the viral factors

and cis-determinants of replication, integration, and reac-

tivation. Even in the absence of well-established geneti-

cally tractable systems for HHV-6B and HHV-7,

transcript and proteomic profiles can rapidly confirm

putative genes and identify novel ORFs, novel transcript

forms, and noncoding RNAs. Vaccine development typi-

cally involves attenuation, but intelligently designed

attenuation will not be possible for the roseoloviruses

without fundamental knowledge of replication and host

interaction determinants.

Summary
Roseolovirues have unique cellular tropisms and bio-

logical properties, and encode ORFs distinct from the

other human betaherpesvirus, HCMV. Each HHV-7 gene

has a homolog in HHV-6A and HHV-6B. However,

HHV-6A and HHV-6B have several genes not found in

HHV-7, including a homolog of the parvovirus rep

protein, U94. Roseolovirus gene products mediate cell

entry and viral replication, modulate the host cell’s

growth, survival, signaling, and immune responses, and

regulate latency. RNA analyses and proteomics coupled

with new genetic tools and advances in systems biology

are needed to advance the identification and function of

known, as well as uncharacterized and novel ORFs, and

transcripts such as miRNAs. Advancements in under-

standing roseolovirus gene function will reveal novel

virus–host interactions and better define the mechanism

of integration and excision of the virus genome into and
www.sciencedirect.com 
from host chromosomes, a potential form of latency that

would be unique among the human herpesviruses.

Investments in understanding the fundamental molecular

processes of roseolovirus infections will inform our un-

derstanding of the dynamic process of persistence and

disease in humans and identify targets for therapeutic

intervention.

Acknowledgements

LTK was supported by an American Cancer Society Research Scholar Grant
RSG-11-160-01-MPC and NIH AI111129-01 and AI097875-01.

References and recommended reading
Papers of particular interest, published within the period of review,
have been highlighted as:

� of special interest
�� of outstanding interest

1. Braun DK, Dominguez G, Pellett PE: Human herpesvirus 6.
Clin Microbiol Rev 1997:521-567.

2. Yamanishi K, Mori Y, Pellett PE: Human herpesviruses 6 and 7. In
Fields Virology, vol 2. Edited by Knipe DM, Howley PM, Cohen JI,
Griffin DE, Lamb RA, Martin MA, Racaniello VR, Roizman B.
Lippincott Williams & Wilkins; 2013:2058-2079 (Chapter 64).

3. Ablashi D, Agut H, Alvarez-Lafuente R, Clark DA, Dewhurst S,
DiLuca D, Flamand L, Frenkel N, Gallo R, Gompels UA et al.:
Classification of HHV-6A and HHV-6B as distinct viruses. Arch
Virol 2014, 159:863-870 http://dx.doi.org/10.1007/s00705-013-
1902-5.

4. Higashi K, Asada H, Kurata T, Ishikawa K, Hayami M, Spriatna Y,
Sutarman, Yamanishi K: Presence of antibody to human
herpesvirus 6 in monkeys. J Gen Virol 1989, 70(Pt 12):3171-
3176.

5. Lacoste V, Verschoor EJ, Nerrienet E, Gessain A: A novel
homologue of Human herpesvirus 6 in chimpanzees. J Gen
Virol 2005, 86:2135-2140 http://dx.doi.org/10.1099/vir.0.81034-0.

6. Lavergne A, Donato D, Gessain A, Niphuis H, Nerrienet E,
Verschoor EJ, Lacoste V: African great apes are naturally
infected with roseoloviruses closely related to Human
herpesvirus 7. J Virol 2014 http://dx.doi.org/10.1128/JVI.01490-
14.

7. Staheli JP, Dyen MR, Lewis P, Barcy S: Discovery and biological
characterization of two novel pig-tailed macaque homologs of
HHV-6 and HHV-7. Virology 2014, 471-473:126-140 http://
dx.doi.org/10.1016/j.virol.2014.10.008.

8. Tesini B, Epstein LG, Caserta MT: Clinical impact of primary
infection with roseoloviruses. Curr Opin Virol 2014, 9C.

9. Hill J, Zerr DM: Roseoloviruses in transplant recipients: clinical
consequences and prospects for treatment and prevention
trials. Curr Opin Virol 2014, 9C.

10. Caselli E, Zatelli MC, Rizzo R, Benedetti S, Martorelli D,
Trasforini G, Cassai E, degli Uberti EC, Di Luca D, Dolcetti R:
Virologic and immunologic evidence supporting an
association between HHV-6 and Hashimoto’s thyroiditis. PLoS
Pathog 2012, 8:e1002951 http://dx.doi.org/10.1371/
journal.ppat.1002951.

11. Leibovitch E, Jacobson S: An update on the evidence linking
HHV-6 with multiple sclerosis. Curr Opin Virol 2014, 9C.

12. Luppi M, Marasca R, Barozzi P, Ferrari S, Ceccherini-Nelli L,
Batoni G, Merelli E, Torelli G: Three cases of human herpesvirus-
6 latent infection: integration of viral genome in peripheral
blood mononuclear cell DNA. J Med Virol 1993, 40:44-52.

13.
��

Pellett PE, Ablashi DV, Ambros PF, Agut H, Caserta MT,
Descamps V, Flamand L, Gautheret-Dejean A, Hall CB, Kamble RT
et al.: Chromosomally integrated human herpesvirus
Current Opinion in Virology 2014, 9:170–177

http://refhub.elsevier.com/S1879-6257(14)00207-7/sbref0005
http://refhub.elsevier.com/S1879-6257(14)00207-7/sbref0005
http://refhub.elsevier.com/S1879-6257(14)00207-7/sbref0010
http://refhub.elsevier.com/S1879-6257(14)00207-7/sbref0010
http://refhub.elsevier.com/S1879-6257(14)00207-7/sbref0010
http://dx.doi.org/10.1007/s00705-013-1902-5
http://dx.doi.org/10.1007/s00705-013-1902-5
http://refhub.elsevier.com/S1879-6257(14)00207-7/sbref0020
http://refhub.elsevier.com/S1879-6257(14)00207-7/sbref0020
http://refhub.elsevier.com/S1879-6257(14)00207-7/sbref0020
http://refhub.elsevier.com/S1879-6257(14)00207-7/sbref0020
http://dx.doi.org/10.1099/vir.0.81034-0
http://dx.doi.org/10.1128/JVI.01490-14
http://dx.doi.org/10.1128/JVI.01490-14
http://dx.doi.org/10.1016/j.virol.2014.10.008
http://dx.doi.org/10.1016/j.virol.2014.10.008
http://refhub.elsevier.com/S1879-6257(14)00207-7/sbref0040
http://refhub.elsevier.com/S1879-6257(14)00207-7/sbref0040
http://refhub.elsevier.com/S1879-6257(14)00207-7/sbref0045
http://refhub.elsevier.com/S1879-6257(14)00207-7/sbref0045
http://refhub.elsevier.com/S1879-6257(14)00207-7/sbref0045
http://dx.doi.org/10.1371/journal.ppat.1002951
http://dx.doi.org/10.1371/journal.ppat.1002951
http://refhub.elsevier.com/S1879-6257(14)00207-7/sbref0055
http://refhub.elsevier.com/S1879-6257(14)00207-7/sbref0055
http://refhub.elsevier.com/S1879-6257(14)00207-7/sbref0060
http://refhub.elsevier.com/S1879-6257(14)00207-7/sbref0060
http://refhub.elsevier.com/S1879-6257(14)00207-7/sbref0060
http://refhub.elsevier.com/S1879-6257(14)00207-7/sbref0060


176 Roseoloviruses
6: questions and answers. Rev Med Virol 2012, 22:144-155
http://dx.doi.org/10.1002/rmv.715.

An international collaboration of many experts in the field that addresses
the consequences of HHV-6A and HHV-6B integration into the host
chromosome.

14. Kaufer BB, Flamand L: Chromosomally integrated HHV-6:
impacts on virus, cell and organismal biology. Curr Opin Virol
2014, 9C.

15. Dominguez G, Dambaugh TR, Stamey FR, Dewhurst S, Inoue N,
Pellett PE: Human herpesvirus 6B genome sequence: coding
content and comparison with human herpesvirus 6A. J Virol
1999, 73:8040-8052.

16.
��

Tuddenham L, Jung JS, Chane-Woon-Ming B, Dölken L, Pfeffer S:
Small RNA deep sequencing identifies microRNAs and other
small noncoding RNAs from human herpesvirus 6B. J Virol
2012, 86:1638-1649 http://dx.doi.org/10.1128/JVI.05911-11.

Identification of HHV-6B miRNAs and other noncoding RNAs expressed
during lytic infection.

17. Hayashi M, Yoshida K, Tang H, Sadaoka T, Kawabata A,
Jasirwan C, Mori Y: Characterization of the human herpesvirus
6A U23 gene. Virology 2014, 450/451:98-105 http://dx.doi.org/
10.1016/j.virol.2013.12.004.

18. Tang H, Kawabata A, Yoshida M, Oyaizu H, Maeki T, Yamanishi K,
Mori Y: Human herpesvirus 6 encoded glycoprotein Q1 gene is
essential for virus growth. Virology 2010, 407:360-367 http://
dx.doi.org/10.1016/j.virol.2010.08.018.

19. Kaspersen MD, Larsen PB, Kofod-Olsen E, Fedder J, Bonde J,
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Human cytomegalovirus (HCMV), the prototypical human b-

herpesvirus, encodes approximately 40 known gene products

that function to subvert our host defense mechanisms. From

HCMV, we have learned about interferon signaling, cytokine

function, chemokine signaling, natural killer (NK) cells’

cytotoxicity toward tumors and virus-infected cells, antigen

processing and presentation, and protective initiation of the

apoptotic signaling cascade. With each successive discovery

of novel host evasion mechanism encoded by the

cytomegaloviruses, we illuminate what these herpesviruses

have learned over the course of their 100 MYr-long evolution

with their hosts. As much as we have learned from HCMV, the

other members of the human b-herpesvirus family, HHV-6 and

HHV-7, are closely-related and yet largely unexplored. These

viruses likely have much yet to teach us.
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Introduction
To achieve optimal reproduction and spread, viruses

realign host cellular processes to create a more hospi-

table environment. Over the course of their co-evolu-

tion, viruses have pushed their hosts to develop and

fortify an arsenal of sophisticated defense mechanisms.

Mammalian hosts, for example, are able to immediately

sense the introduction of foreign viral products. Recog-

nition of these viral products provokes rapid upregula-

tion of host innate immune response genes, including

soluble cytokines and chemokines, which together

influence almost every other aspect of the host response

to pathogens. Shortly after cytokine release and

signaling, host natural killer (NK) cells are activated

to recognize and destroy virus-infected cells. The
Current Opinion in Virology 2014, 9:178–187 
adaptive immune response then ensues, usually

eliminating the virus-infected cells with cytotoxic T

cells and neutralizing antibodies. If all else fails,

individual infected host cells are programmed to

undergo selfless sacrifice – apoptosis for the greater

good.

The intimate relationships that occur between hosts

and viruses that establish long-lived, latent, or persist-

ent infections have further pushed the evolution of the

host defense network. Herpesviruses, for example, after

primary lytic infection, remain latent or persistent

within the host throughout the life of the host. In so

doing, they must necessarily interact with and evade

host defense mechanisms. It is therefore not surprising

that herpesviruses devote as much as half of their

large (�125-240 kB) genomes to counteracting host

defenses.

Here, we illustrate the individual cunning of the b-

herpesviruses. Human cytomegalovirus (HCMV), one

of the most stealthy, successful, and well-studied human

b-herpesviruses, is an example of a virus that has fought -

and seems to be winning - a long evolutionary battle to

live, propagate and disseminate in the face of extensive

and sophisticated defense mechanisms. But HCMV is not

the only b-herpesvirus that seems to be winning this

battle. Human herpesviruses-6A, -6B and -7 are arguably

equally as ‘‘successful’’ as HCMV. While HCMV infects

50-80% of the US population by age 40, HHV-6A, HHV-

6B, and HHV-7 infect over 90% of the population before

the age of 6 [1,2]. Like HCMV, HHV-6A, -6B, and -7 also

remain latent or persistent throughout the life of their

hosts. HCMV, HHV-6A and -6B, and HHV-7 share a core

set of essential b-herpesvirus genes involved in DNA

replication, packaging, and encapsidation. The other,

‘‘non-essential’’ genes in the b-herpesvirus genomes are

largely devoted to escaping host defenses. Indeed, our

current understanding of host defense mechanisms is

derived in part from the what we have learned from

HCMV, and distantly related murine CMV. Study of

these viruses has shed light upon interferon signaling,

cytokine function, chemokine signaling, NK cytotox-

icity toward tumors and virus-infected cells, antigen

processing and presentation, and protective initiation

of the apoptotic signaling cascade. With each discovery

of novel host evasion mechanism encoded by cytome-

galoviruses, we illuminate what these herpesviruses

have learned over their 100 MYr-long evolution with

their hosts. As much as we have learned from HCMV,

the closely-related and largely unexplored HHV-6A,
www.sciencedirect.com
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HHV-6B, and HHV-7 would seem to have much still to

teach us.

The host interferon response
After recognition of uniquely foreign viral products such as

dsRNA or cyotosolic DNA by pattern recognition recep-

tors, host signaling cascades lead to the IkB kinase- NFkB-,

and IRF3/7/9-induced transcription of type I interferons

(IFNa and IFNb) (See Figure 1). Type I interferons signal

through IFN receptors, JAK/STAT adaptor kinases, and

ultimately use the STAT1/STAT2/IRF9 complex to

induce transcription of myriad interferon-inducible genes.

These interferon-responsive gene products, which include

protein kinase R (PKR) and 2’-5’ oligoadenylate synthase

(OAS), induce an anti-viral state in the host, preventing

viruses from usurping cellular protein synthesis machinery

for the production of viral proteins. Type II interferon

(IFN-g), or ‘‘immune’’ interferon, is released by immune

cells in response to cytokines. IFN-g then stimulates the

launch of an effective adaptive immune response, activat-

ing T and B lymphocytes.

To minimize the inhospitable environment they encoun-

ter upon entering the host cell, viruses encode multiple

means of quelling the innate immune response. HCMV,
Figure 1
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for example, encodes 7 protein products that hamper the

host interferon response (Table 1). HHV-6A and -6B have

also been shown to impair interferon signaling: Jaworska,

et al. have shown that the HHV-6A and -6B IE-1 proteins

may either prevent or disrupt the dimerization of IRF3,

reducing the presence of IRF3 in the nucleus, and redu-

cing transcription of IRF3-inducible genes downstream

of IFNb signaling [3��] (Figure 1).

Cytokine and chemokine signaling
Cellular proinflammatory cytokines IL-1b and TNFa

participate in the host defense against viruses through

recruitment of inflammatory cells and activate signaling

cascades involved in both the innate and adaptive

immune response. TNFa is secreted by activated macro-

phages, and binds to TNF receptors (TNFR) expressed

on most tissues (for review, see [4]). TNFR signaling

activates NFkB, and can induce fever, apoptosis, and

inflammation, thus viruses benefit from developing

means to downregulate the functions of inflammatory

cytokines like TNFa and IL-1b. Lymphocyte trafficking

to sites of infection depends upon the local presence of

chemokines, chemoattractant cytokines which attract

immune cells and play a role in the activation of their

effector mechanisms.
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, or dsRNA) are sensed by pattern recognition receptors (e.g.,TLRs,

ins, ultimately leading to interferon regulatory factor-3 (IRF-3)

d, with bcatenin and p300, binding to the interferon-stimulated

 IFNa/b. IFNa or b is secreted and binds to IFNA-Receptors on

TYK-2, and STATs. STAT-1, STAT-2, and IRF-9 comprise the
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, and STAT-1 homodimers. Type II IFN signaling results in

 (GAS) element. HHV-6A and -6B IE-1 proteins prevent the
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Table 1

Listing of HCMV gene products and their function in evasion of host defenses. Note that only 4 of the HCMV genes possess positional

homologs in the roseoloviruses (italic), suggesting that the roseolovirus gene products that participate in evasion of host defenses are

likely to be unique to the roseoloviruses. ORFs possessing positional homologs in HHV-6 are in italics.

ORF Function Positional

homolog

in HHV6

References

IFN response

UL83 Impairs localization of interferon regulatory factors U54 [43,44]

UL83 Inhibits IFI16-mediated DNA sensing [45]

UL123 (IE1) Interferes with Type I and Type II IFN signaling; sequesters STAT2 [46,47]

UL122 (IE2) [48,49]

TRS1 Bind to dsRNA and prevent PKR-induced shutoff of protein synthesis [50–53]

IRS1 Bind to dsRNA and prevent PKR-induced shutoff of protein synthesis [50–53]

ORF94 Reduces OAS expression and impairs OAS function [54]

Cytokine response

UL144 [55,56]

UL144 Binds to BTLA, mimicking the function of HVEM, inhibiting T cell proliferation [57]

UL111a [58,59]

UL21.5 Soluble CC chemokine receptor that functions as a decoy to modulate host response [60]

US27 7-tm GPCR homolog; no ligand found, function unknown [61,62]

US28 7-tm GPCR homolog; signals constitutively in response to multiple CC chemokines [62–66]

UL33 7-tm GPCR homolog; heteroligomerizes with US28 and regulates CCR5 and CXCR4 U12 [62,67]

UL78 7-tm GPCR homolog; heteroligomerizes with US28 and regulates CCR5 and CXCR4 U51 [62]

UL146 [68]

UL147 [69]

UL128 [70,71]

Class I MHC antigen presentation

US2 Binds to class I MHC molecules and results in retrotranslocation and degradation [72]

US11 Binds to class I MHC molecules and results in retrotranslocation and degradation [73]

US3 Binds to class I MHC molecules and impedes trafficking from the ER to the Golgi [74–77]

US6 Blocks the TAP transporter, impeding peptide entry into the ER, affecting stability of class I [78,79]

NK response

UL16 Binds to ULBP1, ULBP2, ULBP6, and MICB and downregulates these NK activating ligands [28,29,33–36]

US18 Induce the lysosomal degradation of MICA [80]

US20 Induce the lysosomal degradation of MICA [80]

UL142 Retains MICA in the Golgi [81,82]

UL141 Sequesters CD155 and CD112, activating ligands for DNAM-1 or CD96 [83,84]

miR-UL112 miRNA that targets and downregulates MICB [85]

UL18 Class I homolog; acts as a decoy NK-inhibitory receptor; also binds LIR-1 inhibitory receptor [86,87]

UL83 Binds to NKp30 NK activating receptor and suppresses signaling [88]

Apoptosis

UL123 (IE1) Activates Akt, which acts on IkK to release NFkB to activate tx of anti-apoptotic genes [89]

UL122 (IE2) Inhibits NFkB’s DNA-binding activity [48,49,90]

UL141 Binds to TRAIL receptors,retaining them, reducing TRAIL-dependent NK-mediated killing [91]

UL36 A class I MHC homolog that is a viral inhibitor of caspase-8-induced apoptosis (vMIA) [92,93]

UL37 Binds to Bax and prevents Bax from arriving in the mitochondria, reducing its activity [94,95]

UL38 Prevents apoptosis; mechanism unknown U19 [96,97]

UL28 Induces caspase-dependent apoptosis by activating caspases 8 and 10, independent of TNFR [98]

miR-UL70-3p Silences pro-apoptotic genes MOAP1, PHAP, and ERN1 [99]

miR-UL148D Silences pro-apoptotic genes MOAP1, PHAP, and ERN1 [99]
To minimize cytokine effects, viruses encode multiple

means of usurping chemokine and cytokine signaling

pathways. HCMV, for example, encodes 12 protein pro-

ducts that may affect chemokine signaling (Table 1).

Eight of these HCMV genes encode G-protein coupled

receptors or chemokines, as predicted from their

sequence homology. HHV-6A, HHV-6B, and HHV-7

possess positional and structural homologs of two of these

HCMV genes, UL33 and UL78. HHV-6B and HHV-7
Current Opinion in Virology 2014, 9:178–187 
U12 and U51 gene products are positional and structural

homologs of HCMV UL33 and UL78, respectively. Both

HHV-7 U12 and U51 have been shown to be functional

chemokine receptors that act as ligands for CCL22 and

CCL19 [5��]. HHV-7 U21 and U51 share �66% and 50%

homology with their HHV-6A and -6B GPCR counter-

parts, while HHV-6A and HHV-6B chemokine receptors

are 94% identical. HHV-6B U12 was shown to be a

functional chemokine receptor for CCL2, CCL4, and
www.sciencedirect.com
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CCL5 [6]. HHV-6A U51A signals constitutively and also

inducibly responds to CCL2, CCL5, CCL7, CCL11, and

CCL13 [7,8].

HHV-6B U83 is a secreted b-chemokine shown to have

monospecific b-chemotactic activity for CCR2 [9��,10��].
The HHV-6A homolog of U83 (U83A) shares 86% iden-

tity with HHV-6B U83, and has b-chemokine activity for

CCR1, CCR4, CCR5, CCR6, and CCR8 [11��]. Catusse,

et al. have shown that U83A can functionally bind to

CCR5 with higher affinity than human chemokines,

displacing their binding, inhibiting chemotaxis of human

leukocytes, and inhibiting infection by HIV-1 strains that

use CCR5 as a co-receptor [12]. The functionality of

these HHV-6 gene products in the context of HHV-6

infection has not yet been investigated, largely due to the

historical lack of a genetically manipulable BAC system

for HHV-6. Interestingly, HHV-7 does not contain a U83

homolog.

T cell activation
The T cell response is critical in the adaptive immune

response to virus infection. Since HHV-6A, HHV-6B, and

HHV-7 predominantly infect CD4+ T-cells, an activated

T cell response directed against HHV-6A, -6B and -7-

infected cells might be complicated by infection of the T

cells themselves. HHV-6A and HHV-6B encode two

proteins that could affect T-cell proliferation during

HHV-6A or -6B infection. The HHV-6B U54 gene pro-

duct, for example, was recently shown to inhibit IL-2

gene expression [13��]. IL-2 is necessary for growth and

proliferation of T cells as they differentiate during the

adaptive immune response. Iampietro et al., found that

the U54-encoded tegument protein interacts with the

phosphatase calcineurin to prevent the dephosphoryla-

tion of NFAT, which blocks its nuclear translocation

[13��]. Nuclear translocation of NFAT is necessary for

its activation of NFAT-inducible genes, which include

IL-2. Interestingly, despite 80% amino acid identity,

HHV-6A U54 does not inhibit IL-2 gene expression

[13��]. The function of HHV-7 U54, which shares only

44% identity with HHV-6B U54, has not been investi-

gated. HHV-6A, -B, and -7 U54 are the positional homo-

logs of HCMV UL82/83.

HHV-6A U24 encodes a unique tail-anchored protein

that downregulates the CD3 T cell receptor signaling

complex from the cell surface [14��,15��]. The physio-

logical benefit of downregulating CD3 during HHV-6A

infection is unclear, but Sullivan and Coscoy suggest

three possibilities: 1) U24 expression might prevent T

cell activation, which would, in turn, reduce the release

of cytokines and potentially dampen the adaptive

immune response. 2) reducing surface expression of

the T cell receptor in infected cells might prevent

reactivation, helping to maintain a latent state. Expres-

sion profiling analysis suggests that U24 is an early gene
www.sciencedirect.com 
product [16], but further experimentation is necessary

to ascertain whether U24 maintains expression during

latency. 3) Sullivan and Coscoy note that pretreatment

of cells with an anti-CD3 antibody enhances HHV-6

replication, thus in downregulating CD3, perhaps U24

reduces HHV-6A titers so that they do not induce large-

scale immune activation [17]. With the availability of

the BAC genetic system for manipulation of the HHV-

6A genome, future investigation aimed at elucidating

the physiological benefit of CD3 downregulation to

HHV-6A may to illuminate the novel pathophysiologi-

cal features of HHV-6 infection [18]. HHV-6B U24 is

quite similar to HHV-6A U24, but HHV-7 U24 shares

only 30% identity with HHV-6A U24 [19]. HHV-6A
and HHV-7 U24 remain uncharacterized.

Antigen processing and presentation to
cytotoxic T cells
To identify virus-infected cells, class I MHC molecules

present peptide antigens derived from intracellular

proteins – host and viral antigens alike – for scrutiny

by cytotoxic T cells. Peptides generated in the cytosol are

transported into the ER via TAP transporters, and are

loaded onto newly-assembled class I MHC molecules (in

humans, termed HLA-A, HLA-B and HLA-C) in the ER.

Once assembled, the peptide-bound class I molecules

travel via the secretory pathway to the plasma membrane,

where they present self- or virus-derived peptides to

cytotoxic T lymphocytes.

NK cell function
Before an adaptive cytotoxic T cell response can develop,

NK cells participate in the innate immune response

against virus infection. NK cells recognize and kill

virus-infected cells and tumor cells through recognition

of NK activating ligands. NK activating ligands are not

expressed constitutively, but instead are induced by

virus infection or in response to cell stressors (e.g.

DNA damage) (See Figure 2). The NK cell integrates

the activating and inhibitory signals it receives in for-

mulating a decision to kill its target. Class I MHC

molecules are inhibitory  ligands for NK cells, thus the

function of the four different HCMV gene products in

downregulating class I molecules (Table 1), would see-

mingly serve to enhance NK cytotoxicity toward virus-

infected cells. Strategically, however, several of these

viral proteins have been shown to downregulate some

HLA alleles (HLA-A and HLA-B) and not others (e.g.

HLA-C) [20,21], leaving some class I alleles remaining

on the cell surface to act as NK inhibitory ligands. This

tactic is practiced by other viruses as well; HIV Nef and

HHV-8 K3 proteins are also selective for HLA-A and

HLA-B alleles [22,23].

None of the four HCMV gene products that affect class I

MHC molecules possess positional homologs in the

roseoloviruses. However, HHV-7 encodes a unique
Current Opinion in Virology 2014, 9:178–187
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Figure 2
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T- and NK-cell recognition of virus-infected cells. (a) Classical class I MHC molecules, (blue, HLA-A, HLA-B, and HLA-C) present peptides to

CD8+ T cells. T cell receptors (TCR, purple), with a co-receptor (CD8, black), can recognize peptides presented in the context of class I molecules

and secrete perforin and granzymes to kill a target cell. Both classical (blue) and non-classical class I MHC molecules (green, HLA-E, e.g.) can act

as inhibitory ligands for NK cell receptors. (b) When a virus infects a cell, NK activating ligands (purple, ULBPs, MICs) are upregulated. NK cells

integrate the inhibitory and activating signals they receive. If activating signals predominate, NK cells can secrete perforin and granzymes to kill a

target cell. HHV-7 U21 downregulates classical and non-classical class I molecules, as well as NK activating ligands, presumably escaping both

T- and NK-cytotoxicity.
protein that reduces cell surface expression of class I

MHC molecules. The HHV-7 U21 gene product binds

to and reroutes class I MHC molecules to lysosomes

[24��,25��]. Interestingly, U21 can associate with and

reroutes all class I gene products, including HLA-A,

HLA-B, HLA-C, as well as the non-classical class I

molecules HLA-E and HLA-G. U21 can even reroute

the murine class I molecule H-2Kb [26]. Given the ability

of U21 to reduce surface expression of NK-inhibitory

class I MHC molecules, we surmised that HHV-7 must

encode other novel means of preventing NK activation.

In addition to the selective downregulation of NK-inhibi-

tory class I MHC molecules, another viral strategy to

escape NK engagement involves downregulation of NK-

activating ligands from the cell surface (Figure 2). Cellular

NK-activating ligands were first discovered when inves-

tigators queried the binding partners of the HCMV UL16

gene product [27] (Table 1). UL16 was found to bind to

two members of a family of cellular proteins termed

UL16-binding proteins, or ULBPs, sequestering them
Current Opinion in Virology 2014, 9:178–187 
in the ER [28,29]. UL16 was also found to associate with

MICB (MHC class I chain-related protein B) [29]. Both

MICs and ULBPs share structural similarity with class I

MHC molecules [30–32]. HMCV UL16 binds to ULBP1,

ULBP2, ULBP6, and MICB, and traps these activating

ligands intracellularly, reducing NK engagement of

HCMV-infected cells [33–36].

The same HHV-7 gene product that binds to and down-

regulates class I MHC molecules, HHV-7 U21, also down-

regulates NK activating ligands MICA, MICB, and reroutes

ULBP1 to lysosomes [37��], thus U21 appears to have dual-

function, downregulating class I MHC molecules as well as

NK activating ligands. While HCMV encodes 7 proteins and

a miRNA that are devoted to downregulating the NK

response, only U21 hasbeen identifiedto affect NK function

in HHV-7. It is not known how HHV-7 (or HHV-6) has

evolved to cope with the other NK activating ligands

CD155, CD112, ULBP2-6, or NKp30, all of which are

targets of HCMV proteins (Table 1). HHV-6A and
HHV-6B U21, which share only �30% identity with
www.sciencedirect.com
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HHV-7 U21, can also bind to and reroute class I MHC

molecules to the lysosomal compartment, but the affinity of

HHV-6A and -6B U21 for class I MHC molecules is

considerably weaker; it is therefore possible that HHV-6

U21 molecules assume an entirely different function [38��].
If so, one would assume that HHV-6A and -6B must encode

other means of reducing NK cytotoxicity toward HHV-6-

infected cells.

Apoptosis
The host response can also include the induction of

apoptosis, as a means to prevent the virus from spread-

ing. The signal to initiate apoptosis can come from

within the infected cell, initiated by infection-induced

stimuli such as DNA damage or other infection-induced

cell stress, or the signal can come from the external

environment, in the form of TNF-family binding to cell

surface TNF’death’ receptors (See Figure 3). Host cell-

intrinsic stimuli are sensed by BH3-only domain-con-

taining proteins of the Bcl-2 family such as Bim and

Bad. Activation of these proteins result in insertion of

proapoptotic Bcl-2 family members such as pore-form-

ing Bax and Bak, into the mitochondrial membrane (for

review, see [39]). Release of cytochrome c from mito-

chondria into the cytosol activates caspase-9 and results

in formation of a complex of APAF-1, cytochrome c, and

caspase-9, called the apoptosome, which mediates clea-

vage of downstream caspases-3 and -7, which in turn

induce the effects of apoptosis, a result of degradation
Figure 3
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www.sciencedirect.com 
of many downstream cellular proteins involved in DNA

repair and cell maintenance. Host-cell-extrinsic stimuli,

such as TNF-family cytokine members TNFa, Fas

ligand, and TRAIL, induce apoptosis through a

death-induced signaling complex (DISC) assembled

on the TNF-receptor family of death domain containing

receptors. Death-domain-containing adaptors such as

fas-associated death domain (FADD) and TNFR-

associated death domain (TRADD) mediate activation

of caspase-8, which can then activate caspases-3 and -7,

converging upon the same effectors as the intrinsic

pathway. Initiation  of the apoptotic cascade results in

dire consequences to the cell, and is therefore tightly

regulated by anti-apoptotic members of the BH3-

domain family, such as Bcl-2 and Bcl-XL, or mitochon-

drial inhibitors of apoptosis (MIAs)(for review see [40]).

Thus, for a virus to inhibit the apoptotic program, it

would either need to upregulate anti-apoptotic proteins,

or inhibit the pro-apoptotic cascade. Not surprisingly,

HCMV encodes at least 4 proteins and 2 miRNAs that

possess these qualities.

Like HCMV, HHV-6B manipulates both the extrinsic

and intrinsic apoptotic cascades: HHV-6B U20 expres-

sion impairs PARP cleavage and cleavage of caspase-3

and caspase-8, preventing extrinsically-induced apoptosis

through an unknown mechanism [41��]. HHV-6B U19,

the positional homolog of HCMV UL38, was recently

shown to impair intrinsic, p53-mediated apoptosis [42��].
pro- caspase-99
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Fa and Fas signal through trimeric TNF Receptors or TNFR-like

 activate caspases, beginning with caspase-8, and ultimately

c pathway is initiated in the mitochondria, which integrate intracellular

of the mitochondria by Bax/Bak channels. Mitochondrial cytochrome c,

aspase cleavage to induce DNA fragmentation and cell death. HHV-6B
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Table 2

Listing of HHV-6A, HHV-6B, and HHV-7 gene products and their function in evasion of host defenses. ORFs possessing positional

homologs in HCMV are in italics.

ORF Function HCMV ORF References

IFN response

6A, 6B IE-1 Prevent or disrupt the dimerization of IRF3, reducing transcription of IRF3-inducible genes [3��]

Cytokine response

7 U12 Positional and structural homolog of UL33 UL33 [5��]

7 U51 Positional and structural homolog of UL78 UL78 [5��]

6A U83 b-Chemokine having chemotactic activity for CCR2 [9,10]

6B U83 Chemotactic activity for CCR2, CCR4, CCR5, CCR6, and CCR8 [11]

Class I MHC antigen presentation

7 U21 Binds to class I MHC molecules and reroutes them to lysosomes [20,21,26]

NK response

7 U21 Binds to NK activating ligands and reroutes them to lysosomes [37]

Apoptosis

6B U19 Impairs intrinsic, p53-mediated apoptosis; mechanism unknown UL38 [42]

6B U20 Impairs extrinsic PARP cleavage and cleavage of caspase-3 and -8; mechanism unknown [41]

T cell response

6A U24 Downregulates CD3 T cell receptor [16,17]

6B U54 Impairs expression of IL-2 UL82/83 [13]
HHV-7 U20 shares only 20% identity with HHV-6B U20,

and does not seem to affect PARP cleavage (S. Konrad

and A. Hudson, unpublished results), and HHV-7 U19
remains uncharacterized.

Summary
Given the similarity of b-herpesvirus family members

HHV-6A, HHV-6B, and HHV-7 to the prototypical b-

herpesvirus HCMV, and the sheer number of HCMV

proteins (�39) that have been described to escape the

host arsenal of defense, the 3 proteins from HHV-7

(U12, U51, and U21) and the 6 proteins from HHV6A or

HHV6B (IE1, U19, U20, U24, U54, and U83) seem

paltry in comparison (Table 2). With the arsenal of

proteins encoded by HCMV found to impair the host

response, one wonders how, with so few means of doing

so themselves, HHV-6A, -6B, and -7 are able to survive

in the face of host defenses? Is the lifestyle of the

roseoloviruses so different from HCMV that they do

not require such an arsenal of host evasion proteins? Do

the roseoloviruses encode fewer host evasion proteins

because the few that they encode are far more effective

than those encoded by HCMV? Or do the roseoloviruses

encode many more, as yet unidentified, means of

escape? It seems likely that some additional gene pro-

ducts from HHV-6A, HHV-6B, and HHV-7 are also

involved in host evasion, with as-yet undiscovered

mechanisms remaining to be elucidated.
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The human roseoloviruses, human herpesviruses 6A (HHV-6A),

HHV-6B, and HHV-7, are highly prevalent viruses that typically

cause fever/rash illnesses such as roseola during early life primary

infections. They also cause significant neurologic disease and

complications following stem cell and solid organ transplantation,

and have suggestive but less certain etiologic associations with

other neurologic diseases and immunologic disorders. The US

National Institute of Allergy and Infectious Diseases recently

sponsored a workshop (Roseoloviruses: Clinical Impact,

Interventions, and Research Needs) to discuss disease

associations, novel biology, and the many unmet research needs

related to Roseoloviruses. This perspective is a distillation of the

workshop’s presentations and discussions, with a focus on the

more general research priorities that emerged.

Addresses
1 Division of Pediatric Infectious Diseases, University of Rochester

Medical Center, Rochester, NY 14642, United States
2 Department of Molecular Genetics & Microbiology, Stony Brook

University, Stony Brook, NY 11794, United States
3 Department of Immunology and Microbiology, Wayne State University

School of Medicine, Detroit, MI 48201, United States

Corresponding author: Caserta, Mary T

(mary_caserta@urmc.rochester.edu)

Current Opinion in Virology 2014, 9:167–169

This review comes from a themed issue on Roseoloviruses

Edited by Laurie Krug

For a complete overview see the Issue and the Editorial

Available online 14th November 2014

http://dx.doi.org/10.1016/j.coviro.2014.10.005

1879-6257/# 2014 Elsevier B.V. All rights reserved.

The National Institute of Allergy and Infectious Diseases

of the US National Institutes of Health recently spon-

sored a workshop entitled ‘Roseoloviruses: Clinical

Impact, Interventions, and Research Needs.’ The meet-

ing brought together over 50 clinical, translational, and

basic science researchers, as well as scientific program

officials to discuss the growing list of robust disease

associations, novel biology, and unmet research needs

related to Roseoloviruses.

The human Roseoloviruses are human herpesviruses

(HHV) 6A, HHV-6B, and HHV-7 [1��]. These viruses

are distinct, yet closely related members of the Roseolo-

virus genus of the Betaherpesvirus subfamily. They are
www.sciencedirect.com 
ubiquitous, infecting upwards of 95% of the human

population; HHV-6B is best known as the major etiologic

agent of roseola infantum and febrile illnesses in early

childhood.

Roseoloviruses are also associated with more consequen-

tial pathologies, including neurological diseases and com-

plications of both hematopoietic and solid organ

transplantation. Although HHV-6 has long been listed

as an Emerging Infectious Pathogen by the NIH, there

remains a paucity of information about roseolovirus infec-

tions, and the full spectrum of diseases caused by roseo-

loviruses is not known. Limited understanding of their

pathogenesis has slowed development of antiviral agents

and therapeutic strategies. Unique features of roseolo-

virus biology, such as germline chromosomal integration

of HHV-6 (ciHHV-6) in 1% of the human population

have complicated the development of diagnostics and

raise important biological questions.

To address these gaps, the workshop was convened to

summarize the known health and societal impacts of

roseolovirus infections, to identify critical barriers to the

development of novel antiviral therapeutics and diagnos-

tics, and to define high priority research questions. Articles

by the meeting’s speakers and their colleagues in this

special issue of Current Opinions in Virology provide in depth

summaries of the state of the art, and elaborate on research

priorities for topics covered at the meeting (Table 1). This

perspective is a distillation of the workshop’s presentations

and lively discussions, with a focus on the more general

research priorities that emerged (Table 2).

Expanding recognition of the significant
clinical impacts of roseolovirus infections
Primary HHV-6B and HHV-7 infections cause roseola
infantum, or sixth disease. In addition, the roseoloviruses

are neuropathogenic in immunocompetent and immuno-

compromised hosts. Reactivation of HHV-6B is a fre-

quent complication of hematopoietic stem cell (HCT)

transplantation, and the syndrome of post-transplant

acute limbic encephalitis (PALE) is a recognized com-

plication of HHV-6B reactivation in the early post-trans-

plant period. This, plus the finding that 30% of febrile

status epilepticus events in children are concurrent with

periods of active infection with HHV-6B, adds to the

previously noted connection between primary HHV-6B

infection in children and febrile seizures.

Other diseases, including encephalitis in immunocompe-

tent hosts, acute graft versus host disease, fever and rash
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Table 1

Roseolovirus workshop: speakers and topicsa.

Roseoloviruses: time for action (Robert C. Gallo, Institute for Human Virology)

Roseolovirus impacts and needs: a community perspective (Kristin Loomis, Human Herpesvirus 6 Foundation)

Clinical impact of primary infections with roseoloviruses (Mary Caserta, University of Rochester) [2]

Roseoloviruses in immune compromised patients: impacts and prospects for clinical trials (Danielle Zerr, University of Washington) [3]

Neurologic complications of roseoloviruses in immune competent children (Leon Epstein, Northwestern University) [2]

The path to therapeutics for roseolovirus infections (Richard J. Whitley, University of Alabama at Birmingham) [4]

Diagnosis of roseolovirus infections: what we know we don’t know (Keith Jerome, University of Washington) [5]

Roseoloviruses: a treasure trove of immune modulators (Amy Hudson, Medical College of Wisconsin) [6]

Chromosomally integrated HHV-6: impacts on virus, cell, and organismal biology (Louis Flamand, Université Laval) [7]

Animal Models (Paolo Lusso, National Institute of Allergy and Infectious Diseases) [8]

Roseomics: a blank slate (Eain Murphy, Cleveland Clinic) [9]

a References are provided for review articles prepared by the speakers and their colleagues for inclusion in this issue of Current Opinions in

Virology. The special issue contains additional related articles [10–12].
following HCT, myelosuppression following HCT,

hepatitis, allograft dysfunction, and pneumonitis have

been associated with HHV-6, but these links remain

tenuous. Their confirmation has been complicated by

the ubiquitous nature of Roseolovirus infections, which

are characterized by lifelong latency or persistence at

several body sites. A further complication is that approxi-

mately 1% of the population harbors ciHHV-6.

An important research priority highlighted at the meeting

is the development of rigorous criteria for identifying

end-organ disease caused by primary or reactivated roseo-

lovirus infection. Detection of viral DNA in blood or body

fluids is informative, but moving beyond simple associ-

ations to proof of causality will require much more. Two

approaches were suggested: (1) use of a specific treatment

for HHV-6B disease (e.g., an antiviral or immunothera-

peutic) to link viral replication with pathology, and (2)

in-depth molecular interrogation of tissues involved in

end-organ disease to identify pathologic and molecular

signatures of HHV-6 infection.
Table 2

Major basic science needs and clinical research objectives.

Foundational research objectives

Assign functions to unknown genes and examine molecular interactions w

Standardize clinical isolates and cell culture infection systems.

Generate roseolovirus bacterial artificial chromosomes for genetic mani

Develop a broad panel of monoclonal antibodies.

Apply modern ‘omics’ methods to understand roseolovirus genomic var

activity.

Define the molecular mechanisms and consequences of Roseolovirus chr

Develop animal models to understand roseolovirus pathogenesis and eva

Clinical research objectives

Epidemiologic studies to understand the natural history and clinical signifi

Rigorously evaluate associations between end organ disease and roseolo

Standardize reliable DNA qPCR and RNA RT-qPCR assays with clinical

Interrogate cells and tissues for active viral infection or biomarkers of ho

Robust clinical trials or longitudinal studies to prove or disprove disease a

Must distinguish between HHV-6A and HHV-6B.

Must define latent versus active infection and account for ciHHV-6.

Antiviral drug or immune therapy should result in reduced viral burden.

Current Opinion in Virology 2014, 9:167–169 
Given the recent recognition of ciHHV-6, case reports

associating high loads of HHV-6A or HHV-6B with dis-

ease should be reconsidered. Studies are needed to eluci-

date the mechanisms and pathogenic effects of ciHHV-6 in

normal and immunocompromised hosts. Such information

will impact not only individuals with ciHHV-6, but is also

needed to assess the effects of ciHHV-6 on organ trans-

plants.

Need for improved diagnostics and
therapeutics
Molecular methods, including digital PCR, can identify

ciHHV-6 and distinguish it from other forms of HHV-6

infection. Strides made in understanding the pathogen-

esis of cytomegalovirus disease illustrate how standar-

dized units of DNA detection would improve our

understanding of roseolovirus pathogenesis. Standardized

measurement of viral DNA levels are needed to define

clinically-relevant viral loads and for meaningful cross-

institutional comparisons of viral loads. Further develop-

ment and standardization of DNA qPCR and reverse
ith host cells.

pulation of virus.

iation, gene expression, and effects on host cell gene expression and

omosomal integration.

luate therapeutic approaches.

cance of ciHHV-6.

virus infection.

ly relevant thresholds.

st responses to viral infection.

ssociations.
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transcriptase-quantitative PCR assays are needed to

enable discrimination between active and latent infec-

tions. New diagnostic tools are also needed for rapid

detection and diagnosis of primary infection. Technol-

ogies suitable for point-of-care testing have the potential

to alleviate unnecessary testing and antibiotic misuse.

Such tools are critical precursors for the development and

evaluation of scientifically based management and treat-

ment protocols.

Only small-scale prophylaxis studies in HCT recipients

have been published to date, and no antiviral drug is

specifically licensed to treat HHV-6B disease. Newer

compounds undergoing evaluation for the treatment of

cytomegalovirus infections might prove useful for treat-

ment of roseolovirus infections. A controlled therapeutic

trial is needed for PALE and to determine whether

prevention or inhibition of HHV-6B reactivation

improves outcomes following transplantation. Unfortu-

nately, a vicious cycle is at play, as clinical trials are

needed to prove causality between infection and disease,

while at the same time well-established pathologic associ-

ations are needed to justify drug development and clinical

trials. Breaking this ‘log jam’ was recognized as one of the

greatest challenges to the field.

Major gaps in understanding roseolovirus
molecular virology and pathogenesis
State-of-the-art technologies must be applied to better

define the host–pathogen ‘interactome.’ In-depth geno-

mic analyses of uncultured clinical strains of roseolo-

viruses will help to identify possible disease-specific

pathogenesis determinants. A multi-center repository of

viral and human specimens from longitudinal studies is

needed to enable such studies. Proteomics and metabo-

lomics can open the door to identification of unique viral

functions that would inform pathogenesis and serve as

targets for new therapeutics. A basic molecular infrastruc-

ture of genetic systems, libraries of recombinant viruses,

cloned ORFs for screening, and monoclonal antibodies is

needed to define mechanisms by which roseoloviruses

modulate host biology (e.g., immune responses) at the

cellular and organismal levels. Animal models that reca-

pitulate human disease are being developed in mice and

non-human primates.

Time to act
Rigorous proof of etiologic associations of these ubiqui-

tous but neglected human pathogens will require coordi-

nated investment in improved diagnostic methods, and

development of safe and specific antivirals. Therapeutic

approaches will need to be evaluated in well-designed,
www.sciencedirect.com 
controlled trials that include meaningful clinical and

virologic endpoints. In addition, and as has been the

case for other important pathogens, a solid understanding

of basic roseolovirus biology is an essential critical under-

pinning for future work.

A roadmap has been drawn. It is time to move forward.
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During lytic infections HHV-6A and HHV-6B disrupt E2F1–Rb

complexes by Rb degradation, releasing E2F1 and driving the

infected cells toward the S-phase. Whereas upon infection

E2F1 and its cofactor DP1 were up-regulated, additional E2F

responsive genes were expressed differentially in various cells.

E2F binding sites were identified in promoters of several HHV-6

genes, including the U27 and U79 associated with viral DNA

replication, revealing high dependence on the binding site and

the effect of the E2F1 transcription factor. Viral genes regulation

by E2F1 can synchronize viral replication with the optimal cell

cycle phase, enabling utilization of host resources for

successful viral replication. Furthermore, it was found that

infection by roseoloviruses leads to cell cycle arrest, mostly in

the G2/M-phase.
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Introduction
The mammalian cell cycle is a highly regulated process.

At the G1 phase cells undergo a critical check point,

ensuring their readiness for DNA synthesis. This is

followed by the S-phase during which the cellular gen-

ome is duplicated. Following DNA duplication, the cell

progresses into the G2 phase, preparing for mitosis.

Members of the E2F family serve as transcriptional

activators of genes that play significant roles in cell cycle

control, including: DNA replication, mitosis, the mitotic

checkpoint, DNA-damage checkpoints, DNA repair,

differentiation, development and apoptosis [1]. In

responsive genes containing the E2F binding sequence

transcription begins by binding the E2F and DP hetero-

dimers to the E2F binding site. The E2F-DP transcrip-

tion complexes are negatively regulated by members of
Current Opinion in Virology 2014, 9:162–166 
the retinoblastoma (Rb) protein family, which block the

E2F activation domain, preventing the transcription  of

E2F responsive genes.

The Rb protein is regulated by phosphorylation and

degradation. Hypophosphorylated Rb binds E2F1 with

a high affinity, leading to inhibition of E2F1 transcription

activity. In the G1 phase the Rb protein is inactivated

following its phosphorylation by cyclin D/CDK-4/6 and

cyclin E/CDK-2 complexes, resulting in its dissociation

from E2F1 and cellular entry into the S-phase [2,3].

DNA viruses synthesize significant quantities of nucleic

acid during the productive lytic replication. Therefore

they have evolved ways to modulate the Rb–E2F path-

way. Viral inactivation of the Rb family members enables

them to create an environment more accommodating for

viral replication. The disassembly of Rb/E2F1 complexes

by viral proteins leads to accumulation of free E2F1

transcription factor and induction of S phase entrance.

Such viral proteins include the extensively studied

human papillomavirus oncoprotein E7, the adenovirus

E1A protein, and the SV40 large T antigen. These three

viral proteins represent two distinct mechanisms of Rb

inactivation: steric disruption of Rb–E2F complexes and

Rb degradation [4��].

Herpesviruses encode proteins that use these pathways

and additional direct and indirect mechanisms to inhibit

Rb family member function.

Cells infected by the alphaherpesviruses HSV-1, HSV-2,

and VZV, accumulate in the G1 phase of the cell cycle

[5,6]. Moreover, while the Rb proteins remain unpho-

sphorylated in HSV-infected cells, the activity of kinases

responsible for their phosphorylation, the Cdks, is critical

for HSV-1 replication [7]. Thus, the alphaherpesviruses
may be less dependent on cellular E2F-responsive genes

for viral DNA replication than other herpesviruses and

may not need to target Rb family members for inacti-

vation.

The gammaherpesviruses are associated with proliferative

disorders including a number of cancers. Both EBV and

KSHV appear to encode proteins that modulate the Rb–
E2F pathway, either directly or indirectly. EBV has

multiple proteins (Z, R, LMP-1, EBNA-2,-3C,-5), that

could lead to the phosphorylation of Rb by cellular CDKs,

and/or may directly phosphorylate Rb through the func-

tion of the viral kinase, BGLF-4 (ortholog of HCMV

UL97). Moreover, EBV at the lytic infection, but not

during latency, was shown to induce cell cycle arrest at
www.sciencedirect.com
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Mechanisms used by HHV-6 to modulate the Rb–E2F pathway and

cell cycle progression. (a) E2F1 regulation in uninfected cells involves

Rb phosphorylation and E2F1 release, leading to transcription of

cellular genes and entry to S-phase. (b) HHV-6 infection leads to

massive Rb degradation and to E2F1 release. Active E2F1 induces up-

regulation of itself and its co-factor DP1 which are utilized for

transcription of cellular genes as well as viral genes (U27, U79). DR6

gene product causes cell cycle arrest in G2-phase.
the G1/S with elevated levels of cyclin E and cyclin A [8].

In the KSHV infection E2F1 pathway is activated by

LANA-mediated disruption of E2F1/Rb complexes, or by

direct phosphorylation of Rb through the action of the v-

cyclin and/or the ORF36 proteins [9,10].

Beta-herpesviruses manipulate E2F–Rb
pathway during lytic infection
For the HCMV: It was demonstrated that at very early

stages of infection hypophosphorylated Rb protein was

first degraded, and protein synthesized de novo was then

hyperphosphorylated [11]. The HCMV pp71 protein is a

prominent component of the viral tegument [12,13]. By

binding to Rb protein, pp71 induces Rb degradation in a

proteasome-dependent, ubiquitin-independent manner

[14]. HCMV UL97 has been shown to phosphorylate

multiple residues of Rb, disrupting the E2F1/Rb and

Rb/HDAC complexes, rendering Rb inactive. Due to

both pp71-mediated degradation and UL97-mediated

phosphorylation, Rb is inactivated and E2F responsive

genes are highly expressed [15].

For the Roseoloviruses: We have shown [16�,17��] that in

SupT1 T cells infected with HHV-6A the E2F1 protein

and its co-factor DP1 increased whereas the Rb protein

underwent massive degradation without hyperphosphor-

ylation at 3 sites, Ser-780, Ser-807 and Thr-821, known to

control E2F/Rb association (Figure 1). The degradation

of Rb started simultaneously with E2F1 and DP1 up-

regulation. Furthermore, it correlated with the accumu-

lation of the viral p41 protein that functions in viral DNA

replication. Increased E2F1 expression was also

described employing a microarray assay of HHV-6B

infected adult T-cell leukemia cell line [18]. Because

HHV-6A infection induced elevation of free E2F1, it was

of interest to monitor the expression of the E2F1 target

genes and alterations of cell cycle during the infection.

Although E2F1 and DP1 levels were elevated we found

that cyclin A, cyclin E, DHFR and MCM5 were not up-

regulated [16�,17��]. These results differ from the results

of De Bolle and coworkers, who found that late post

HHV-6A infection of human cord blood mononuclear

cells there was increased accumulation of cyclin A with-

out up-regulation of cyclin E [19]. Furthermore, analysis

of the regulatory proteins which are involved in the cell

cycle in HSB-2 cells [20], indicated that cyclins A2, B1,

E1 and MCM5 were increased in HHV-6-infected cells,

but there was no difference in cyclin D1. Hence, the

expression of E2F1 target genes during HHV-6A infec-

tion varies in different cells/tissues examined.

Enhanced transcription of viral genes by E2F1
As described above, HHV-6A infection induces Rb degra-

dation, up-regulation of E2F1 and DP1. However, there

was no increased expression of additional E2F1-respon-

sive genes. It was thus of interest to test whether the virus

exploited E2F1 for viral gene transcription. Scanning of
www.sciencedirect.com 
the HHV-6A genome revealed several genes that con-

tained the consensus E2F binding sequence

TTTSSCGC, where S is either a G or a C upstream of

the ATG start codon. This included: (i) U18, a transcrip-

tional regulator in the IE-B/E gene class. (ii) U33, a viral

tegument protein that is a critical mediator of metabolic

stress. (iii) U52 gene which promotes the accumulation of

late transcripts. (iv) U74 gene encoding a portion of the

helicase/primase complex. (v) The U27 and the U79

genes, both functioning in viral DNA synthesis [17��].
The U27 gene encodes the P41 viral DNA polymerase

processivity factor [21]. The U79-80 early gene encodes a

family of nuclear proteins that were found to be essential

for viral DNA replication [22].

We concentrated on the U27 and U79 genes and tested

whether the E2F1 transcription factor and E2F binding

site were utilized for their expression [17��]. We con-

structed vectors containing a GFP reporter gene driven

by wild-type viral promoter or by mutant promoter that
Current Opinion in Virology 2014, 9:162–166
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abolished the binding of E2Fs. It was found that the

expression of the U27 promoter was dependent on the

presence of the intact E2F binding site. Abolishing the

E2F site led to significant decrease in promoter activity.

Moreover, treatment of the cells with siRNA to E2F1

resulted in decreased U27 promoter activity whereas

over-expression of E2F1 led to a substantial increase of

the promoter activity. This indicated that additional E2F

transcription factors may play a role in the induction of the

promoter. High activity of the U79 promoter was detected

in SupT1 cells depending on the presence of E2F binding

site because the mutation of the site led to 90% reduced

activity. The involvement of E2F1 in U79 promoter

activity was demonstrated by siRNA treatment and

over-expression of the E2F1 protein.

The involvement of E2F1 in transcription of the viral U27

and the U79, b and a genes, respectively, is a novel

outlook of the regulation of HHV-6 gene expression.

E2F1 studies are of additional interest because approxi-

mately 30% of cellular genes contain promoters with

E2F1 binding site and analyses of thousand promoters

revealed that more than 20% of promoters were bound by

E2F1. These results place the E2F1 as a factor that

contributes to the regulation of a large fraction of human

genes [23]. A possible mechanism for the utilization of

E2F1 transcription factor in viral replication might

involve viral protein(s) recruiting the E2F1 and directing

it to viral promoter(s) or to selected cellular promoters.

Examples for such processes include the E2 adenovirus

promoter that is activated by an E2F1/E4 complex [24].

In addition, bovine herpes virus 1 (BHV-1) infection leads

to increased E2F1 protein levels and the activity of the

bovine ICP0 early promoter is increased dramatically by

E2F1 [25].

Cell cycle arrest in roseoloviruses infection
A variety of viruses were found to induce the G2/M arrest,

including DNA viruses, RNA viruses, and retroviruses
Table 1

Cell cycle arrest induced by HHV-6A and HHV-6B

Virus Host cell line Phase o

HHV-6B Human epithelial cell (HCT 116) G1/S 24 hp

HHV-6B (DR6 exp. v.) Human epithelial cell (HCT 116) G2/M 24, 4

HHV-6A

HHV-6B

Human glial precursor cell G1/S 72 hp

HHV-6A

HHV-6B

Human CBMC G2/M 48, 7

HHV-6B T cells (MOLT 3) G1/S; G2/M

HHV-6A T cells (SUPT1) G2/M 24; 4

HHV-6A T cells (HSB-2) G2/M 24, 4

Abbreviations: exp. v., cells were transfected with expression vector; hp

fluorescent staining; V, fluorescent staining of viral components.

Current Opinion in Virology 2014, 9:162–166 
[26]. Inhibition of the G2/M checkpoint by viruses may

serve to maintain the cell in a pseudo S-like phase

increasing viral replication [20]. Viruses may also utilize

the DNA damage responses to maximize viral replication

[27]. For the many of viruses it is difficult to define

precisely the mechanism(s) of the G2/M arrest. The cell

cycle is controlled by complex interactions that are not yet

fully understood. In a number of instances, G2 arrest has

been linked to the inhibition or delay in the activation of

the Cdk1/cyclin B1 kinase activity [28]. Another mech-

anism is the interference with mitotic progression. It was

shown that HHV-6A infection induced cell cycle arrests

at the G2/M phase in different cell types, as summarized

in Table 1, including: glial cell, epithelial cells, HSB-2

cells, cord blood mononuclear cells and SupT1 T cells.

HHV-6B infection led to cell cycle arrest in G1/S and/or

G2/M depending on the cells that were tested [19,29–
31,32�]. A new report showed that DR6 protein can

induce accumulation of cells in G2/M and also the cyto-

plasmic accumulation of cyclin B1 [32�]. This function

was dependent on the N-terminal part of the protein,

which is also required for nuclear localization. Thus, a

possible role of DR6 during HHV-6B infection might be

that DR6 functions as a chaperone facilitating the assem-

bly of viral replication units or facilitating cell prolifer-

ation arrest in order to enhance viral replication.

It was reported by Zauli G. and co-worker [33] that HHV-

7 infection of both primary CD4+ T lymphocytes and

SupT1 T-cell line induced various alteration of cell cycle

regulation. Specifically, elevated level of cyclin B and

Cdk1 were observed late post infection and were accom-

panied by G2/M arrest. To the best of our knowledge, no

additional studies were reported for HHV-7 involvement

in cell cycle arrest.

Mechanisms for cell cycle arrest at G2/M may involve the

cellular response to DNA damage [26]. More specifically,
f arrest Assay Mechanism,

viral protein involved

Ref.

i FACS: tDNA, V p53 independent [31]

8 hpi FACS: tDNA DR6, p53 independent

WB of cyclins and CDK

[32�]

i FACS: tDNA, V Not analyzed [29]

2, 96 hpi FACS: tDNA, V WB of cyclins and CDKs [19]

 24, 48 hpi FACS: tDNA p53 pathway [30]

8 hpi FACS: tDNA Rb modification [16�]

8, 72 hpi FACS: tDNA WB of Cyclins [33]

i, hours post infection; WB, western blot analysis; tDNA, total DNA
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checkpoint kinases 1 and 2 (Chk1 and Chk2) can be

responsible for the G2/M phase arrest by phosphorylation

of CDKs in response to either ssDNA or dsDNA breakage

[34,35]. Massive DNA breakage occurs during the clea-

vage and packaging of viral concatemeric DNA. In

addition, in viral infections there is uncoupling between

cell cycle phase and the appearance of cellular proteins

characteristic of the particular phase [36].

In HHV-6 infections there are uncertainties with regards

to the cell cycle arrest at the G2/M phase: first, the cell

cycle is defined by measuring total DNA content of the

infected cells (Table 1) without considering the viral

DNA replication. Second, we expect that the majority

of infected cells will be accumulated in the arrested

phase. However, in previous reports only moderate

increase in the percentage of cells in the G2/M phase

were observed. Finally, the infection of HHV-6 leads to

fusion of infected cells and formation of syncytia with

ballooning shape, causing significant alterations in cell

morphology and function.

Summary of the findings and future directions
It was shown that HHV-6 infection of T cells resulted in

Rb degradation. The released E2F1 was associated with

some cellular transcription as well as transcription of viral

genes (Figure 1). The HHV-6 genome encodes a number

of genes containing in their promoters the E2F binding

site. These include the E2F binding sites in the U27, U74

and U79 promoters which are conserved in the HHV-6A

and HHV-6B genomes. A comparison between HHV-6A

and HHV-6B regarding the expression of these genes, in

primary infection as well as following reactivation from

latency, can contribute to the understanding of variation

of viral replication in different cell types.

Future studies could involve analyses of additional genes

containing the E2F1 binding site in their promoters.

Furthermore, the kinetics of synthesis should be followed

so as to determine whether the transcription employing

E2F binding site follows the regular cascade regulation of

immediate early, early and late viral genes expression. An

increasing body of evidence demonstrated that HHV-6

induces the accumulation of infected cells at G2/M phase.

However, these experiments were based mostly on total

DNA analysis. It is necessary to test additional aspects

characterizing the phase of the cell cycle as well as the

metabolic state of the infected cells. These analyses

would potentially increase our understanding of roseolo-

virus involvement in human diseases and engineering of

new antiviral therapeutics.
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Most adults remain chronically infected with HHV-6 after

resolution of a primary infection in childhood, with the latent

virus held in check by the immune system. Iatrogenic

immunosuppression following solid organ transplantation

(SOT) or hematopoetic stem cell transplantation (HSCT) can

allow latent viruses to reactivate. HHV-6 reactivation has been

associated with increased morbidity, graft rejection, and

neurological complications post-transplantation. Recent work

has identified HHV-6 antigens that are targeted by the CD4+

and CD8+ T cell response in chronically infected adults. T cell

populations recognizing these targets can be expanded in vitro

and are being developed for use in autologous immunotherapy

to control post-transplantation HHV-6 reaction.
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Introduction
The increasing clinical importance of HHV-6 demands

effective treatment options. Currently, individuals with

complicated HHV-6 infection or reactivation are treated

with ganciclovir or similar drugs approved for managing

other viral infections [1]. However, these drugs have sig-

nificant toxicity [2] and in some cases are ineffective

against HHV-6 [3]. Immunotherapies based on antibodies,

expanded T cells, or vaccines potentially could provide an

alternative or adjunctive approach to controlling HHV-6

infection. Immunotherapy for human herpesviruses has

been in development since the early 1990s [4], and has
Current Opinion in Virology 2014, 9:154–161 
been shown to be a safe and practical approach to control-

ling related human herpesviruses human cytomegalovirus

(HCMV) [5], Epstein-Barr virus (EBV) [6,7] and herpes

simplex virus (HSV) [8]. For HHV-6, little is known about

the immune mechanisms that control infection, and cur-

rent understanding is based largely on a few studies and

extrapolation from HCMV [9]. Here we review recent

progress in characterizing the immune response to

HHV-6 and discuss implications for development of

immunotherapies in immunocompromised patients.

Challenges to characterizing the immune
response to HHV-6
The lack of a basic understanding of the immune

response to HHV-6 has delayed the development of

HHV-6 specific immunotherapies. Several aspects of

HHV-6 biology interfere with straightforward application

of conventional approaches to characterizing antiviral

immunity. First, two closely related viruses HHV-6A

and HHV-6B have been treated as a single species until

very recently [10]. Mounting evidence suggests important

differences in the biology of these two viruses and the

immune response that they induce [11], but in general they

have not been distinguished in studies of the immune

response to HHV-6. Second, antibody titers to HHV-6

and frequencies of T cells recognizing HHV-6 are low,

making detection of these responses challenging [12��].
Blood samples obtained during active viremia might

exhibit higher antibody titers or T cell responses, but

symptomatic viremia occurs primarily in young children

or immunosuppressed patients from whom sufficient blood

samples are difficult to obtain. Third, HHV-6 is a lympho-

tropic virus that prefers T cells for replication, but also is

capable of infecting a variety of antigen presenting cells

[1,13]. Profound effects on the normal function of both

infected T cells and infected antigen presenting cells have

been demonstrated [14–17], and these effects interfere

with ex vivo analyses. Finally, HHV-6 infection is restricted

to humans and closely related primates [18,19], so the lack

of a small animal model has inhibited detailed mechanistic

studies. Despite these limitations, recently there have

been notable advances in defining HHV-6-specific T

cell responses and in developing approaches to adoptive

immunotherapy.

HHV-6B protective immunity
The observation that primary HHV-6B infection is a mild

febrile disease from which most children recover rapidly

without complications suggests that protective HHV-6B
www.sciencedirect.com
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immune responses are commonly elicited. After primary

infection, HHV-6B is able to persist as a chronic or latent

infection controlled by the adaptive immune response.

The virus can reactivate under conditions of deficient

cell-mediated immunity [20]. Although immunity to

HHV-6B could evolve over time, there is evidence that

lifelong responses to HHV-6B are imprinted very early

after the first onset of HHV-6B infection [21]. Neonates

are usually protected from HHV-6B infection by

maternal-derived antibodies until titers wane over 3–9

months after birth, making older children susceptible to

infection [22]. Primary infection occurs usually before the

second year of age, and induces antibodies that persist

throughout life [22]. Evidence that T cells are required to

control HHV-6B replication is inferred from persistent

HHV-6B viral replication in immunosuppressed patients

who do not have proliferative T cell responses [20].

Antibody responses
Most studies of the antibody response to HHV-6 have

aimed to develop diagnostic methods that differentiate

between the three closely related roseoloviruses, HHV-

6A, HHV-6B and HHV-7. Little is known about the range

of antigens targeted by antibodies recognizing these

viruses [23,24]. A few HHV-6 antigens prominently tar-

geted by the antibody response have been identified.

These include the major antigenic virion protein U11

[25], the major glycoproteins gH (U48) [26,27] and gQ

(U100) [28], the polymerase processivity factor (U27)

[29], the late antigen U94 [30], and the tail-anchored

membrane protein U24 [31,32] (Figure 1). Serological

assays that utilize U11 as antigen are in development for

the definition of roseolovirus-specific antibodies. Neutra-

lizing antibodies have been found mainly after primary

infection and in transplant recipients but also in some

healthy adult donors, which might indicate subclinical

reactivation of the virus [33]. Monoclonal neutralizing

antibodies targeting gH [34–36], gQ [37] and gB [38] have

been described.

T cell responses
The T cell response to HHV-6 mostly has been charac-

terized using peripheral blood from healthy adults.

Responding T cells, measured as the number of IFN-g

producing cells, are present at low frequency (on the order

of a few cells per 1000 (or <0.2%) [12��,39��,40��], which

contrasts sharply with the stronger responses that are

observed for HCMV (up to 4%) [41]. T cell responses

have been reported to be higher in HSCT patients [42],

but few studies have focused on this population. Despite

the low frequency of responding T cells in healthy adults,

strong CD4+ and CD8+ T cell proliferative responses are

observed [43–45], primarily restricted to memory cells.

Proliferation of HHV-6-specific T cells in response to

viral antigen allows these low-frequency T cell popu-

lations to be expanded in vitro for detailed study. The

expanded population consists mainly of CD4+ T cells
www.sciencedirect.com 
that secrete IFN-g and exhibit cytotoxic capacity

[12��,39��,46]. A prominent subpopulation secretes IL-

10 [12��,47�]. IL-4 and low amounts of IL-2 also are also

produced [12��], a profile similar to that reported in serum

of children with roseola [48��]. The reason for CD4+ T

cell skewing and limited CD8+ T cells in expanded

populations is not clear. The lower frequency of respond-

ing CD8+ T cells in blood (�10�5) certainly is a factor

[40��], but viral evasion mechanisms also might be

responsible.

Shortly after the discovery of HHV-6, the immunosup-

pressive properties of this virus were recognized. Initially,

it was reported that HHV-6 arrests IL-2 synthesis and T

cell proliferation [49,50]. Subsequent studies identified

immune modulation by effects in both infected and non-

infected cells (reviewed in [51]). In infected CD4+ T

cells, HHV-6 induces apoptosis [52], inhibition of IL-2

synthesis [14], cell cycle arrest [16], and TCR and MHC-I

down modulation [11]. In antigen-presenting cells, HHV-

6 induces MHC-I down-modulation [53] and reduces the

ability of these cells to present antigens and activate T

cells [11]. In addition, IL-10 secreted by CD4+ T cells

responding to HHV-6 modulates proliferation of other T

cell populations [47�]. Different subsets of regulatory T

cells (Tregs) have been observed in vitro after HHV-6-

specific expansion or cloning [12��,39��,54�].

Targets of the T cell response to HHV-6
The HHV-6 genome encodes �100 proteins, and many of

them are >1000 amino acids in length, making the

identification of immunodominant epitopes a laborious

and time consuming task. Information on the particular

peptide epitopes recognized by T cells is required for

identification, characterization, and modulation of T

responses specific to HHV-6 as compared to closely

related viruses. Approaches used to limit the number

of antigens/peptides to screen have focused on HHV-6

proteins present at high levels in virus preparations [12��],
or on HHV-6 homologues of antigens defined for HCMV

[39��,40��]. Our group used the first approach to define

11 CD4+ T cell epitopes [12��]. These derived from

4 virion proteins (the major capsid protein U57, the

tegument proteins U11 and U14, and the glycoprotein

U48) and from a non-structural protein (DNA polymerase

U38) (Table 1). CD4+ T cells expanded with peptides

corresponding to these epitopes responded to APC trea-

ted with virus preparations and produced IFN-g and

expressed markers associated with cytotoxic potential.

Using the second approach, Martin et al. were able to

expand CD8+ T cell lines and clones that showed reac-

tivity to peptides from tegument proteins U11 and U54

and showed pro-inflammatory and cytotoxic capabilities

[40��]. Also, using the second approach and T cell lines

expanded in vitro, Gerdemann et al. demonstrated T cell

responses to peptide epitopes derived from the immedi-

ate-early protein U90, the tegument proteins U11, U14
Current Opinion in Virology 2014, 9:154–161
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Figure 1
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Targets of the adaptive immune response to HHV-6. Antibody and T cell responses target the viral surface membrane, tegument, and capsid

components of the virion as well as non-structure proteins expressed in infected cells. Inset (left) shows a purified viral particle with components

indicated, and cartoon (right) shows intracellular locations for the expected stepwise viral assembly process.
and U54, and the myristylated virion protein U71 [39��].
The expanded T cells produced IFN-g and TNF-a and

killed antigen-pulsed autologous target cells. Although

the expanded T cell populations consisted mainly of

CD4+ T cells, epitopes were identified only for the minor

component of CD8+ T cells. Additional CD8+ T cell

epitopes in U90 were identified recently by Iampietro

et al. [55]. Overall, twelve CD8+ T cell epitopes were

defined: three from U11, two from U54 [40��], six from

U90 and one from U14 [39��], to complement the eleven

CD4+ T cell epitopes described above. In agreement

with earlier reports, many of the mapped T cell responses

are crossreactive between HHV-6A and HHV-6B, and so

cannot be used as markers of virus-specific responses.

Non-crossreactive responses have been reported for cap-

sid antigens, but specific epitopes were not defined [56].

Additionally, three putative HHV-6 epitopes have been

defined by virtue of cross-reactivity with human self-

antigens (Table 1). T cell responses to a HHV-6 U24

peptide that shares homology with the multiple-sclerosis

autoantigen myelin basic protein (MBP) have been

reported, but any significance of this crossreactive

response in multiple sclerosis is controversial [32,57].

CD4+ T cells recognizing the diabetes-associated gluta-

mic acid decarboxylase islet autoantigen GAD95 were

shown to cross-react with a similar peptide sequence from
Current Opinion in Virology 2014, 9:154–161 
HHV-6A U95 [58], but whether these cells recognize

naturally processed antigens is not known. A summary

of HHV-6 proteins targeted by CD4+ and CD8+ T cell

responses is shown in Figure 1, with specific epitopes

listed in Table 1.

HHV-6B reactivation after solid organ
transplantation
In the period following immunosuppression, transplant

recipients are highly susceptible to common viruses such

as herpesviruses, adenoviruses, and seasonal viruses like

influenza. HHV-6 reactivation, mostly by HHV-6B [59],

occurs in over 40% of HSCT and in up to 60% of solid

organ transplant (SOT) recipients [59] during the first

weeks after transplantation. HHV-6 reactivation in HSCT

patients is associated with graft-versus-host disease,

delayed engraftment [60], and CNS dysfunction, including

encephalitis that may have long term effects [61�,62�,63��].
In SOT patients, HHV-6B reactivation is associated with

prolonged anti-HHV-6 immunosuppression [64], fever,

rash, hepatitis, pneumonitis, encephalitis and colitis [59].

In the months after transplantation, T cell proliferative

responses to HHV-6 are absent in most individuals. By

comparison, proliferative responses to HCMV develop

over several weeks (although they do not reach levels

observed in healthy donors) [64]. Autologous immune
www.sciencedirect.com
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Table 1

CD4 and CD8 T cell epitopes defined for HHV-6

Epitope HLAa ORFb Protein Evidencec Specificityd Reference

GILDFGVKL A2 U11 Antigenic virion protein Cyto; grzB 6B [40��]

MLWYTVYNI A2 U11 Antigenic virion protein Cyto; grzB; Tet 6B [40��]

SLMSGVEPL A2 U11 Antigenic virion protein Cyto; grzB 6B [40��]

ILYGPLTRI A2 U54 Virion transactivator CTL; Cyto; grzB; Tet 6B [40��]

LLCGNLLIL A2 U54 Virion transactivator Cyto; grzB 6B [40��]

TEMMNDARL B40 U14 Phosphoprotein pp85 CTL; Cyto n.d. [39��]

FESLLFPEL B40 U90 Immediate-early protein 1 CTL; Cyto n.d. [39��]

VEESIKEIL B40 U90 Immediate-early protein 1 CTL; Cyto n.d. [39��]

CIQSIGASV A2 U90 Immediate-early protein 1 CTL; Cyto 6A/6B [55]

CYAKMLSGK A3 U90 Immediate-early protein 1 CTL; Cyto 6B/6A? [55]

STSMFILGK A3 U90 Immediate-early protein 1 CTL; Cyto 6B/6A? [55]

NPEISNKEF B7 U90 Immediate-early protein 1 CTL; Cyto 6B/6A? [55]

SLESYSASKAFSVPENG DR1 U11 Antigenic virion protein Cyto 6A/6B [12��]

RDNSYMPLIALSLHENG DR1 U14 Phosphoprotein pp85 Cyto 6A/6B [12��]

VVGKYSLQDSVLVVRLF DR1 U38 DNA polymerase Cyto; Tet 6A/6B [12��]

GIYYIRVVEVRQMQYDN DR1 U48 Glycoprotein H Cyto; Tet 6A/6B [12��]

VDEEYRFISDATFVDET DR1 U48 Glycoprotein H Cyto; Tet 6A/6B [12��]

TRPLYITMKAQKKNSRI DR1 U54 Virion transactivator Cyto; Tet 6A/6B [12��]

FKSLIYINENTKILEVE DR1 U57 Major capsid protein Cyto; Tet 6A/6B [12��]

IRHHVGIEKPNPSEGEA DR1 U57 Major capsid protein Cyto 6A/6B [12��]

SLLSIMTLAAMHSKLSP DR1 U57 Major capsid protein Cyto; Tet 6A/6B [12��]

TTNPWASLPGSLGDILY DR1 U57 Major capsid protein Cyto; Tet 6A/6B [12��]

DPSRYNISFEALLGIYS DR1 U57 Major capsid protein Cyto; Tet 6A/6B [12��]

KELLQSYVSKNNN DR53 U95 Immediate-early protein Cyto 6A?; GAD95 [58]

MDRPRTPPPSYSE n.d. U24 Tail-anchored mb. protein Prolif; Cyto 6A/B; MBP [32]

RPRTPPPSY n.d. U24 Tail-anchored mb. protein Prolif; CTL 6B?; MBP [68]

a HLA restriction. HLA-A2, HLA-A3, HLA-B7, and HLA-B40 are class I MHC proteins recognized by CD8+ T cells. HLA-DR1 and HLA-DR53 are class

II MHC proteins recognized by CD4+ T cells. n.d., not defined.
b HHV-6 open reading frame.
c CTL, cytotoxicity (cell killing) assay; Cyto, cytokine release; Grzb, granzyme B release; Prolif, cell proliferation assay; Tet, MHC tetramer staining.
d Specificity for HHV-6A or HHV-6B, or self antigens, where defined.?, presumptive specificity; n.d. not defined.
enhancement therapy, in which pre-transplantation T

cell populations are expanded ex vivo and re-introduced

(Figure 2), could provide a way to boost the post-

transplantation T cell response and help control HHV-6

reactivation.

Autologous immune enhancement therapy
Susceptibility to HHV-6B and other common viruses

is associated with deficiency of T cell responses in

immunosuppressed individuals [20,65]. Restoration of

protective T cell responses against other herpesviruses

such as HCMV and EBV has been achieved by transfer

of T cells expanded in vitro using purified virus, recom-

binants proteins, or synthetic versions of known immu-

nodominant antigens to stimulate T cell proliferation

[5]. A turning point in the immunotherapy to HHV-6B

has been the identification of immunodominant anti-

gens and the demonstration that HHV-6B-specific T

cells can be expanded in large numbers if cytokines

that support T cell expansion are provided in culture

[12��,39��,66�]. This knowledge has been rapidly trans-

ferred to a small clinical trial that attempted the recon-

stitution of immune responses to HHV-6B, HCMV, BK

virus, EBV, and adenovirus by expansion of PBMCs
www.sciencedirect.com 
with a mixture of peptides from these viruses [67��].
The Phase I clinical trial showed that adoptive transfer

of peptide-expanded T cells for these viruses was safe,

did not induce high levels of cytokines, and did not

induce allo-specific responses. Expansion of HHV-6B T

cells was performed with overlapping peptides of the

immediate early protein 1 (U90) and the tegument

proteins U11 and U14 shown to be important targets

of the HHV-6B T cell response [12��,39��,40��]. The

transferred T cell population consisted of �60% CD4+

and 35% CD8+ T cells. Although T cell lines were

generated from a relatively small number of cells

(15 million), and a large number of peptides were

included (opening the possibility of peptide compe-

tition for binding to MHC proteins), almost 30% of the

developed T cell lines had responses to all 5 viruses and

70% to at least 3 viruses. More important and striking

was that virus levels were reduced after adoptive trans-

fer of T cells, and this reduction was accompanied by

an increase in the number of IFN-g producing cells.

Moreover, three patients that received expanded T

cells as prophylaxis were protected from virus reactiva-

tion beyond 3 months after the adoptive transfer.

However, as indicated by the authors, the clinical trial
Current Opinion in Virology 2014, 9:154–161
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Figure 2
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Autologous immune enhancement therapy. (a) Primary infection with HHV-6 virus elicits antibody and T cell responses. (b) During chronic infection

virus levels are controlled by antibody and T cell responses. (c) In transplantation patients, iatrogenic immunosuppression interferes with immune

control of HHV-6 and allows virus reactivation with consequent pathology. (d) HHV-6-specific T cells expanded in vivo can be reintroduced after

transplantation to control virus reactivation.
did not have enough participants to support a claim that

reduction in virus levels was a result of infused of T

cells rather than other host or viral factors. The T cell

population transferred was highly enriched in CD4+ T

cells with a minor component of CD8+ T cells, which

may have been beneficial since allo-specific disease has

been associated with higher frequency of HHV-6-

specific CD8+ T cells [42].
Current Opinion in Virology 2014, 9:154–161 
Future directions
Although the outcome of the first human HHV-6 immu-

notherapy by transfer of in vitro expanded T cells was

favorable, we do not know the epitope specificity of the

transferred cells, how the transferred cells contributed to

the virus control, or even if the antigens used to expand

these cells are the major mediators of protective immune

responses. Although a handful of both CD4+ and CD8+ T
www.sciencedirect.com
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cell epitopes have been identified, in most cases these

were identified by reference to homologous HCMV anti-

gens, and it is not clear how broadly these represent the

overall HHV-6-specific response. A better understanding

of the repertoire of peptides recognized by HHV-6-

specific T cells would provide additional possibilities

for in vitro T cell expansion for adoptive immunotherapy.

In general studies of HHV-6 T cell epitopes have been

performed using blood samples from healthy but chroni-

cally infected adults. Characterization of the T cell

responses induced by primary infection in childhood,

or by virus reactivation in transplantation patients where

viremia is controlled, would be helpful to identify pro-

tective epitopes. Experiments using in vitro expanded T

cell populations have identified both productive and

suppressive responses, but these have not been associated

with particular epitopes. Several in vitro studies have

suggested that IL-10 produced by CD4+ T cells could

play a major role in limiting the expansion of both CD4+

and CD8+ T cell responses. A better understanding of

various types and functions of T cells recognizing HHV-6

antigens might allow beneficial responses to be prefer-

entially expanded. New adoptive immunotherapy proto-

cols incorporating this information might allow protection

to be obtained with a lower number of transferred cells,

limiting the time and resources needed for expansion and

reducing the possibility of expansion of unwanted cell

responses.

Conclusions
Important advances in defining the T cell response to

HHV-6 have allowed the first clinical trial in HHV-6

immunotherapy. Although responses to HHV-6 antigens

are present in PBMCs at low frequency, CD4+ and CD8+

T cell antigens have been identified from a variety of viral

proteins. Sufficient numbers of cells for immunotherapies

can be generated if cells are expanded in medium con-

taining antigen and cytokines. Promising results from a

clinical trial reported a decrease in virus load in patients

with HHV-6 reactivation after transfer of in vitro expanded

T cells, suggesting that immunotherapies for HHV-6 are

possible without large numbers or antigenic specificities of

responding cells. Whether the observed reduction in virus

load was mediated by CD4+ or CD8+ T cells and the

epitope specificity of these responses remains unknown.

Since HHV-6 T cell reactivity has been associated with

multiple sclerosis and other autoimmune diseases, future

studies should distinguish protective and allo-specific epi-

topes to minimize potentially cross-reactive autoimmune

responses. Nevertheless, efforts to improve the efficacy of

HHV-6 therapies will greatly benefit the populations at risk

of severe viral disease.
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Human herpesvirus 6 (HHV-6) infections are typically mild and

in rare cases can result in encephalitis. A common theme

among all the herpesviruses, however, is the reactivation upon

immune suppression. HHV-6 commonly reactivates in

transplant recipients. No therapies are approved currently for

the treatment of these infections, although small studies and

individual case reports have reported intermittent success with

drugs such as cidofovir, ganciclovir, and foscarnet. In addition

to the current experimental therapies, many other compounds

have been reported to inhibit HHV-6 in cell culture with varying

degrees of efficacy. Recent advances in the development of

new small molecule inhibitors of HHV-6 will be reviewed with

regard to their efficacy and spectrum of antiviral activity. The

potential for new therapies for HHV-6 infections will also be

discussed, and they will likely arise from efforts to develop

broad spectrum antiviral therapies for DNA viruses.
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Introduction
Human herpesvirus 6 A (HHV-6A) and human herpes-

virus 6 B (HHV-6B) are members of the betaherpesvirus

subfamily, as is cytomegalovirus (CMV) and Human

Herpesvirus 7 (HHV-7). Primary infections with the

Roseoloviruses HHV-6A and HHV-6B typically occur

early in life with HHV-6B being the most common [1].

The two HHV-6 viruses are distinct entities and are

classified as different species [2,3]; they are associated

with different clinical manifestations, yet it is not always

feasible to distinguish the viruses in clinical studies so
Current Opinion in Virology 2014, 9:148–153 
data from viruses are generally analyzed together and

reported simply as HHV-6 infections. Here, we will

specify the specific virus where possible and will simply

use the HHV-6 designation where it is not. Primary

infection with HHV-6B has been shown to be the cause

of exanthem subitum (roseola) in infants [4], and can also

result in an infectious mononucleosis-like illness in adults

[5]. Infections caused by HHV-6A and HHV-7 have not

been well characterized and are typically reported in the

transplant setting [6,7]. Serologic studies indicated that

most people become infected with HHV-6 by the age of

two, most likely through saliva transmission [8]. The

receptors for HHV-6A and HHV-6B have been identified

as CD46 and CD134, respectively [9,10]. This facilitates

entry into many cell types including CD4+ cells, CD8+

T-cells, natural killer cells, monocytes, epithelial cells,

and brain-derived cells [11].

The development of therapies for HHV-6 infections has

been limited because of the lack of unequivocal associ-

ation between infection and disease that warrants inter-

vention. Roseola infections are typically mild and do not

warrant therapy. Other infections caused by HHV-6 have

been incriminated in a variety of human illnesses; how-

ever, the lack of cause and effect has impeded drug

development and controlled studies of existing medi-

cations in order to establish value of treatment are want-

ing. In large part, such associations may be dependent

upon controlled clinical trials that establish the value of

therapies in targeted diseases. Diseases associated with

HHV-6 infection have included encephalitis and infec-

tions in immunocompromised host, particularly intersti-

tial pneumonitis [12]. In addition, infection has been

incriminated as a cause of multiple sclerosis, as has been

the case for numerous other viral agents [13]. Reactivation

of HHV-6 frequently occurs during immune suppression

and is seen in 50% of all bone marrow and 20–30% of solid

organ transplant recipients [7,14]. Two clinical studies

suggest a role of HHV-6 in contributing to morbidity in

hematopoietic stem cell transplant recipients. Specifically

the early reactivation with increasing viral load was associ-

ated with fever, skin rash, diarrhea, pulmonary compli-

cations, and neurologic disorders [15]. A second study

utilized prophylactic ganciclovir in a placebo-controlled

study that demonstrated drug administration decreased

the probability of skin rash, interstitial pneumonitis, diar-

rhea, and thrombatic microangiopathy (TMA) [16]. Diag-

nostic procedures and sequencing analyses have shown

that the viral genome can integrate within telomeric

regions of chromosomes in some individuals, although
www.sciencedirect.com
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its significance remains unclear [17,18�]. While these stu-

dies do not define disease etiology, they provide potential

indications for the development of therapeutics for anti-

viral agents.

Methodologic assays
Several methodologies have been employed to detect

activity of small molecules against all of the betaherpes-

viruses and will be summarized specifically for HHV-6

infection. All isolates of HHV-6A and HHV-6B replicate

well in phytohemagglutinin-stimulated umbilical cord

blood lymphocytes and exhibit a prolonged replication

cycle characteristic of this subfamily [19]. Additional cell

lines that support viral replication have been identified

and are generally used in the evaluation of antiviral

activity. The first report of antiviral activity against GS

strain of HHV-6A was described in a T-lymphoblastoid

cell line (HSB-2) [20]. The Z29 strain of HHV-6B repli-

cates well in Molt-3 cells, and this line is most often used

in evaluating the efficacy of antiviral agents [21]. In all

cells, viral replication can be assessed by DNA hybridiz-

ation, quantitative PCR, and flow cytometry, but cyto-

pathology is also apparent in some cell lines [20,22�,23].

Molecules with antiviral activity against HHV-6
The susceptibility of HHV-6 to antiviral drugs seems to

be distinct from that of CMV, although CDV, PFA, and

GCV all appear to inhibit virus replication in vitro with

modest efficacy [20,24]. To summarize the activity of the

more commonly used compounds, the in vitro efficacy

from several manuscripts is shown in Table 1. Additional

effective agents are in various stages of development and

the most promising small molecules will be discussed in

detail below (Figure 1). Immunotherapeutic strategies

have also been reported for the therapy of HHV-6 infec-

tions but are outside the scope of this review [25].

Ganciclovir
The one molecule studied extensively for therapy of

putative HHV-6 infection is ganciclovir, a nucleoside

analog that was synthesized in the 1980s for the treatment

of CMV infection. This compound is phosphorylated by

the U69 kinase in HHV-6 and the active triphosphate
Table 1

Efficacy of selected antiviral drugs against HHV-6A and HHV-6B

EC50 for HHV-6A (mM)a

Meana Range 

foscarnet 23.4 6.7–53 

cidofovir 4.72 0.33–14 

cyclic cidofovir 2.9 0.79–6.3 

ganciclovir 17 2.0–25 

cyclopropavir 4.5 1.3–7 

brincidofovir 0.003 NA 

L BDCRB 2.8 NA 

a The mean of EC50 values are shown from the indicated publications alth

www.sciencedirect.com 
metabolite inhibits the DNA polymerase. The activity of

ganciclovir in vitro is dependent upon the assay that has

been employed. Utilizing an immunofluorescence assay,

ganciclovir was reported to have a minimal level of in vitro
activity at >25 mM [20]. However, in a more sensitive

assay that utilized cord blood lymphocytes, Yoshida and

colleagues reported activity in the mM range [26]. In large

part, this limited activity against both viruses may be

related to the low level of phosphorylation by the U69

kinase, and, as a consequence, the reduced inhibition of

DNA polymerase by the active metabolite [27,28]. Resist-

ance to the drug maps both the U69 protein kinase as well

as the U38 DNA polymerase, and the mechanism of

action is thought to be similar to that against CMV [29,30].

Several clinical trials have suggested the value of ganci-

clovir, but from a very limited perspective [16,31–37]. Of

note, resistant virus has been detected in a number of

transplant patients and is not unexpected given the

modest efficacy of ganciclovir against this virus [38��,39].

With the development of the oral formulation of ganci-

clovir, valganciclovir, an alternative to intravenous

therapy exists and provides an opportunity for the per-

formance of controlled clinical trials with greater ease of

drug administration in those populations that tolerate

orally administered medications.

Foscarnet
Foscarnet is employed to treat CMV infections in the

immunocompromised host, particularly in the presence of

antiviral resistance to ganciclovir. This drug directly binds

the pyrophosphate binding site in the DNA polymerase

and inhibits the activity of this enzyme. It was among the

first drugs identified to have activity against HHV-6 repli-

cation in vitro at a level of approximately 25–50 mM, and it

is active against both viruses [20,40]. In clinical studies the

drug has been used alone and with other licensed drugs,

including ganciclovir and cidofovir for the treatment of

HHV-6 infections [33,35,37,41,42]. Notably, the electrolyte

imbalances resulting from therapy result in renal toxicity

that is a deterrent to its use. As would be anticipated from
EC50 for HHV6B (mM) Ref

Mean Range

50 22–86 [20,26,68]

6.5 2.3–13 [20,22�,26,47,53,60,68]

9 5.4–16 [20,26,47]

4.5 NA [20,26]

1.6 0.7–2.5 [22�,53]

0.007 NA [47]

9.7 NA [60]

ough not all of them report the efficacy of both HHV-6A and HHV-6B.

Current Opinion in Virology 2014, 9:148–153
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Figure 1
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its mechanism of action, resistance to foscarnet maps to the

DNA polymerase [43].

Cidofovir
Cidofovir is licensed for the therapy of CMV infections,

particularly in high-risk immunocompromised hosts.

Historically, the medication was used as an alternative

treatment to ganciclovir in AIDS patients with retinitis.

This acyclic nucleoside phosphonate analog is phos-

phorylated by cellular kinases to the diphosphate and

is incorporated into viral DNA by the viral DNA poly-

merase. With improved therapy of HIV infection, the

incidence of CMV retinitis is low. Cidofovir and cyclic

cidofovir inhibit the replication of both HHV-6A and

HHV-6B with EC50 values of 3–9 mM [20,22�]. There
Current Opinion in Virology 2014, 9:148–153 
are anecdotal reports suggesting that it may have some

utility in the treatment of HHV-6 infections either

alone or with other compounds and is plausible given

this drug is active against all the human herpesviruses

[33,42,44]. Drug resistance has been generated in the

laboratory and maps to the HHV-6 DNA polymerase,

namely the U38 gene [45].

Brincidofovir
The lipophilic derivative of cidofovir, brincidofovir or

CMX001, is the hexadecyloxypropyl-cidofovir molecule

[46]. It is a lipophilic prodrug of cidofovir that is highly

active against many human DNA viruses, including

HHV-6 and its mechanism of action is similar to that

of CDV. It is among the most active molecules that have
www.sciencedirect.com
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been tested against this virus with EC50 values of 3 and

7 nM for HHV-6A and HHV-6B, respectively [47]. This

molecule has been studied extensively in animal models

against a variety of DNA viral infections, and has superior

activity to cidofovir [48,49]; however, since there is no

animal model of HHV-6 infection, no similar data are

currently available. Furthermore, the drug was shown to

suppress CMV disease in hematopoietic cell transplant in

a phase 2 clinical trial, and a pivotal phase 3 clinical trial is

underway in hematopoietic stem cell transplant recipi-

ents [50]. Since the betaherpesviruses CMV and HHV-6

both exhibit similar levels of susceptibility to brincido-

fovir, the drug might be expected to suppress disease

from both viruses in this high risk population.

CMV423
CMV423 is a novel molecule with good activity against

HHV-6 (EC50 approximately 50 nM) [51]. It inhibits a

cellular protein tyrosine kinase that plays a critical role in

HHV-6 viral replication [52]. Since the compound inhi-

bits a cellular protein, the likelihood of advancement into

clinical trials is unclear because of potential host cell

toxicity.

Cyclopropavir and other
methylenecyclopropane analogs
Cyclopropavir is a methylenecyclopropane analog that is a

potent inhibitor of CMV and is also active in vitro against

HHV-6 infection with EC50 values of 1 and 6 mM for

HHV-6A and 6B [22�,53]. Its mechanism of action is

similar to ganciclovir in that it is phosphorylated by the

CMV UL97 kinase, but it also interferes with the normal

function of the UL97 kinase that is critical to the replica-

tion of CMV [54,55,56�,57]. In HHV-6 the UL97 homo-

log, U69, phosphorylates the drug thus, its mechanism of

action appears to parallel that of ganciclovir although with

superior efficacy against HHV-6 [58��].

Recently, similar methylenecyclopropane analogs have

been synthesized with ether and thioether substitutions

at the 6 position of the purine and these analogs have

superior activity to cyclopropavir [22�]. These are also

phosphorylated directly by the U69 kinase [58��]. The

mechanism of action of this series of compounds is more

complex than that of cyclopropavir because of the modi-

fication of the guanine as well as the absence of a 30

hydroxyl, which implies that it is likely an obligate chain

terminator (Figure 1).

Benzimidazole derivatives
Several benzimidazole analogs have been reported to

have antiviral activity against the human herpesviruses;

maribavir is an L benzimidazole and is a potent inhibitor

of CMV replication with submicromolar efficacy [59].

The molecule inhibits CMV UL97 kinase and is the

most specific protein kinase inhibitor that has been

identified to date [57]. Unfortunately, Phase III clinical
www.sciencedirect.com 
trials for the prevention of CMV infection in hemato-

poietic stem cell transplant recipients failed to demon-

strate efficacy and its further development is in doubt.

This molecule also inhibits the U69 protein kinase in

HHV-6, however its antiviral activity against HHV-6A

and HHV-6B in cell culture is very limited as compared to

CMV [60].

Another D benzimidazole analog, BDCRB (2-bromo-5,

6-dichloro-1-beta-D-ribofuranosylbenzimidazole), has a

completely different mechanism of action and is the first

described inhibitor of the CMV terminase [61]. While this

molecule exhibits limited antiviral activity against HHV-

6, the L analog of BDCRB is a potent inhibitor of HHV-6

with EC50 values of 2.8 and 9.7 mM for HHV-6A and

HHV-6B, respectively [60]. It is unknown whether this

compound targets the U69 kinase, terminase complex, or

other essential function, but the distinct structure activity

relationship of this series of compounds against HHV-6 is

clearly different from that of CMV and thus this series of

compounds holds promise.

Other molecules with activity against HHV-6 in
vitro
Artesunate molecules are licensed and have efficacy

against malaria and, to a much more limited extent,

CMV infection. The precise mechanism of action against

the DNA viruses is unknown and may not be specific. For

CMV infection, the EC50 is approximately 5.8 mM

[62,63]. Anecdotal reports have documented apparent

efficacy in a very few cases but clinical trials will be

required to assess the potential utility of this compound

[64,65]. Efficacy has also been reported against HHV-6A

with and EC50 value of 3.8 mM [66]. A single report

described the use of the drug in the treatment of a child

with HHV-6B myocarditis, yet it was unclear that the

artesunate therapy was related to the recovery of the

patient [67�].

Numerous other molecules have been reported to exhibit

antiviral activity against HHV-6 in cell culture. 3-Deaza-

HPMPA is active in the low mM range [20], however,

because of toxicity it will not be advanced into clinical

trials. Arylsulfone derivatives also have been reported to

exhibit activity with CMV EC50 values at the low micro-

molar level and this series warrants further investigation

[68]. Continued evaluation of new molecular entities will

likely be required to identify potent new molecules with

novel molecular targets.

Conclusions
At present, it is highly unlikely that any drug will be

developed specifically for the treatment of HHV-6 infec-

tions. The availability of molecules that inhibit HHV-6

will in all probability result from spin-offs of those drugs

synthesized to improved therapy of CMV infections of

humans. More importantly, it underscores the need for
Current Opinion in Virology 2014, 9:148–153
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safe and effective broad spectrum antiviral drugs that can

prevent disease in high risk populations not only from

CMV and HHV-6, but also from other DNA viruses such

as HHV-7, herpes simplex virus, Epstein-Barr virus,

varicella-zoster virus, BK virus, and adenovirus. As long

as the causative role of HHV-6 in diseases with significant

impact or morbidity is not established, the development

of specific therapeutics for this virus will remain a rela-

tively low priority. The focus on antiviral agents with a

broad spectrum antiviral activity that includes the roseo-

loviruses currently has the greatest potential to yield

effective therapies for these infections.
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Following reports of elevated antiviral antibodies in MS patient

sera and viral DNA detection in MS plaques nearly two decades

ago, the neurovirology community has actively explored how

herpesviruses such as HHV-6 might be involved in MS disease

pathogenesis. Though findings across the field are non-

uniform, an emerging consensus of viral correlates with disease

course and evidence of HHV-6-specific immune responses in

the CNS provide compelling evidence for a role, direct or

indirect, of this virus in MS. Ultimately, the only way to

demonstrate the involvement, or lack thereof, of HHV-6 or other

herpesviruses in this disease is through a controlled clinical trial

of an efficacious antiviral drug.
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Introduction: pathogens in multiple sclerosis
Multiple sclerosis (MS), a neurodegenerative, inflamma-

tory demyelinating disease of the central nervous system

(CNS), is idiopathic, despite its description over 150 years

ago [1]. For the past two decades, following reports of

elevated anti-human herpesvirus 6 (HHV-6) antibodies in

MS patient sera [2,3] and HHV-6 viral DNA detection in

MS plaques [4], the neurovirology community has

actively explored if and how this virus is involved in

MS disease pathogenesis.

The discussion of any pathogen implicated in MS should

be contextualized by the long history of infectious agents

in this disease. Proponents of an infectious etiology of MS

can be traced back to the mid 19th century, when descrip-

tions of the disease were beginning to coalesce [1]. The

idea of an infectious etiology resurged in the 1930s with
www.sciencedirect.com 
the observation that, by histopathology, the perivenous

demyelination of MS and post-infectious encephalomye-

litis were indistinguishable. From this time forward, there

were many reports of agents detected in MS patient

spinal fluid including spirochetes and Toxoplasma gondii
[1]. There were also reports of agents recovered from

laboratory animals following immunization with tissue

from MS patients. These agents have been largely dis-

missed due to confirmed contamination or irreproduci-

bility, but the list once included rabies, a Scrapie agent,

measles and chimpanzee cytomegalovirus, to name a few.

Interestingly, viruses have dominated the list of sus-

pected agents; there have been few bacteria or parasites

by comparison [5��]. However, despite the subsequent

isolation of the specific viruses responsible for the demye-

linating diseases subacute sclerosing panencephalitis

(SSPE: measles virus) and progressive multifocal leu-

koencephalopathy (PML: JC virus), the focus of the

MS field has largely transitioned away from a single,

unidentified agent (though some hold this view [6])

towards ubiquitous agents, particularly herpesviruses

[5��]. While there are numerous reports for other herpes-

viruses in MS, notably the sero-epidemiological data for

human herpesvirus 4 (Epstein–Barr virus (EBV))

reviewed in [7,8], this current review will focus solely

on HHV-6.

Traces of HHV-6 in the CNS: virus detection
and virus-specific immune responses
Early studies reporting HHV-6 viral DNA in the brains

[9,10] and CSF [11] of MS patients and controls sup-

ported that HHV-6 possessed strong neurotropism that

was associated with a CNS reservoir [9]. This was

supported by concomitant studies reporting higher

levels of HHV-6 expression in MS brains compared

to control brains [12], and greater levels of viral DNA

[13,14] and viral mRNA [12] specifically in the demye-

linated plaques. An example of HHV-6 expression, as

detected by immunohistochemistry (IHC), in a peri-

ventricular MS lesion is shown in Figure 1. HHV-6

positivity (red) is evident in the lesion (a–e), but

notably absent in non-lesional areas and normal appear-

ing white matter (f). The observations of viral mRNA

[12] and protein expression [4] specifically in oligoden-

drocytes proved central to the hypothesis that HHV-6

may be a driver of MS pathogenesis. Collectively, these

studies demonstrated that while HHV-6 may be a

commensal of normal brain, its replication and

activity is enriched in the context of MS pathology.

This is highlighted in Table 1, which summarizes the
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Figure 1

(a) (b) (c)

(d) (e) (f)
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HHV-6 expression is detectable by immunohistochemistry in a periventricular MS lesion (a–e), but not in the normal appearing white matter (f). Red:

HHV-6 gp116. MS lesions were obtained from a subset of patient material previously reported [14].
pathologic, inflammatory and virologic findings of

20 lesions from a subset of MS lesions previously

reported [14]. HHV-6 expression was greater in the

acute relative to chronic lesions, associating viral

expression with earlier stages of MS lesion formation.

This appears specific for HHV-6 since IHC for three

other herpesviruses were uniformly negative (Table 1).

Compelling evidence that HHV-6 may be a key com-

ponent in MS pathology stems from the observation that

in approximately 20% of patients, a subset of oligoclonal

bands (OCB) demonstrates HHV-6 specificity [15,16]. A

2014 publication by Pietläinen-Nicklén and colleagues

analyzed patients with demyelinating disease (mostly

MS) and HHV-6-reactive CSF OCB, and determined

that patients with HHV-6 OCB appear to form a separate

group, which was significantly younger, with greater IgG

OCB relative to patients without HHV-6 OCB [17]. OCB,

representing intrathecally produced immunoglobulins,

are a hallmark of MS but are not specific for the disease.

In fact, OCB are common among CNS disorders with an

infectious component, and when the inciting agent is

known, OCB are often specific to that agent (for example

measles virus in SSPE). For this reason, the identification

of HHV-6-specific bands in a subset of MS patients has

strengthened the idea that HHV-6 from within the CNS
Current Opinion in Virology 2014, 9:127–133 
is involved in the disease (Figure 2) [18]. Furthermore,

the hypothesis of an antigen-driven immune response

in MS is supported by data of clonally expanded B cells

in MS brains, similar to SSPE brains [19]. A recent

study observed interesting correlates between the pre-

sence of herpesvirus-specific OCB (HHV-6 and EBV)

and several clinical parameters [20]. Virtanen and col-

leagues reported that herpesvirus-specific  CSF OCB

inversely correlated with the detection of CSF viral

DNA, and that MS patients with CSF viral DNA had

significantly more contrast enhancing lesions compared

to those without detectable CSF viral DNA. These data

suggest that anti-viral antibodies may be necessary for

the maintenance of viral latency, as the reduction in

such antibodies corresponded to both detectable CSF

virus and MRI activity indicative of an active inflam-

matory process [20].

While OCB reflect CNS B cell reactivity toward HHV-6,

less is known about CNS T cell reactivity toward HHV-6.

A recent study by Wuest and colleagues reported signifi-

cant enrichment of HHV-6 specific CD4 T cell responses

in CSF compared to peripheral blood of MS patients

(progressive and relapsing-remitting subtypes),

suggesting that HHV-6-expanded T cells in the CNS

may contribute to disease activity [21].
www.sciencedirect.com
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Table 1

MS lesion activity and viral infection

Lesion Classification Lesion pathology Inflammation Herpesviral expression

Axonal

damage

Astrocytosis Myelin

loss

Oligo

loss

CD4+ CD8+ CD20+ CD68+ HSV-1 CMV EBV HHV-6

(NFTP) (GFAP) (LFB) (S100) T cells T cells B cells MF

1 Acute Intact Reactive Minor Normal ++ ++ � ++ � � � +

2 Acute Intact Reactive Major Normal + ++ � +++ � � � +++

3 Chronic active Major Reactive Major Minor ++ + � + � � � +

4 Chronic Major Normal Major Major � + � + � � � +

5 Acute Minor Reactive Minor Normal ++ ++ � +++ � � � ++

6 Acute Intact Reactive Minor Normal ++ ++ � ++ � � � ++

7 Chronic active Intact Reactive Major Normal � + � +++ � � � +

8 Acute Intact Reactive Minor Normal � + � +++ � � � ++

9 Acute Minor Reactive Minor Normal + + � ++ � � � +

10 Chronic Major Normal Major Major � � � � � � � �
11 Acute Intact Reactive Minor Normal + + � ++ � � � ++

12 Acute Minor Reactive Minor Normal + + � ++ � � � +

13 Chronic active Major Normal Major Minor + + � + � � � +

14 Chronic active Intact Reactive Major Normal + + + ++ � � � +

15 Chronic Minor Reactive Major Minor + + � ++ � � � �

16 Acute Minor Reactive Major Normal � + + +++ � � � +

17 Chronic active Minor Reactive Major Normal + + � ++ � � � �
18 Chronic active Minor Reactive Major Minor + ++ + ++ � � � +

19 Chronic active Major Reactive Major Major ++ ++ ++ + � � � �
20 Shadow Minor Normal Minor Normal � � � + � � � ++
Traces of HHV-6 in the periphery: virus
detection and virus-specific immune
responses
It is not solely studies of the CNS that have established an

association between HHV-6 and MS; early observations

of HHV-6 in the periphery of MS patients linked the

detection of, or an immune response to, the virus with

clinically active disease [22,23]. Recent studies with MS

cohorts in different geographical areas have largely con-

firmed these previously reported observations. Two

recent studies found greater levels of HHV-6 IgM and

IgG in MS cohorts compared to controls, one in an Iranian

population [24] and one in a Tunisian population [25�]. A

separate study of another Iranian MS cohort detected a

higher frequency of viral DNA in the serum of patients,

along with a relative increase in viral load during disease

exacerbation [26]. Such observations of increased anti-

body responses and elevated viral loads in the serum,

especially during disease exacerbation, confirm earlier

observations of HHV-6 in MS and appear to be valid

across geographically varied populations.

Many serologic and DNA studies published in the past

several years have stratified MS patients into the clinical

phases of relapse or remission, and provide mounting

evidence for a role — direct or indirect — of HHV-6

in the switch from remission to relapse. A 2012 study of a

Tasmanian cohort found HHV-6 IgG titer to be a signifi-

cant predictor of relapse risk [27]. This was echoed in a
www.sciencedirect.com 
2014 study of a Spanish MS cohort, which reported that a

decrease in HHV-6 antibody titers correlated with fewer

relapses and less disease progression [28]. Interestingly,

the authors noted that IgG titers reached their highest

value two weeks, and IgM titers one month, before

relapse [28]. A 2011 study of a Latvian MS cohort

reported HHV-6 DNA in the plasma of a majority of

RRMS and SPMS patients during relapse, which was

confirmed by enhancing MRI lesions, and correlated with

higher serum concentrations of the inflammatory cyto-

kines IL-12 and TNF-alpha relative to periods of remis-

sion [29�]. These data agree with earlier studies of serum

HHV-6 detection during relapse and add the observation

of cytokine correlates, complementing a recent study

suggesting that TNF-alpha may be predictive of HHV-

6 reactivation [30]. However, if HHV-6 is involved in

relapses, the nature of its involvement remains unknown.

Does the virus have an active role in initiating or poten-

tiating the inflammation associated with relapse, or is it a

marker of disease activity, activated from latency as a

result of the surrounding inflammation?

Other serological studies have focused on the immune

response to a specific portion of the virus, an approach that

may provide functional insights into the role of HHV-6 in

disease. A 2013 study examined antibodies to a latency-

promoting protein, U94/REP, and found elevated IgG

levels in Tunisian MS patients compared to controls; for

eight patients with samples collected during relapsing
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A complex interplay between genetics, immune response and viral infections (such as HHV-6) influences the development of MS. Genetics have been

implicated in the susceptibility to the disease, as well as in the response to antiviral therapy. Under certain inflammatory conditions, potentially in

genetically susceptible individuals, the latency and persistence of herpesviruses may result in a dysregulated infection. Anti-viral immune responses in

the periphery and CNS of MS patients suggest that a dysregulated viral infection is a key component of the disease.

Adapted from Owens, Bennet. 2012 Mult Scler.
and remitting phases, significantly higher titers were

detected during the relapsing phases [31]. The finding

of an elevated U94 IgG response in MS patients versus

controls agrees with previous findings in an Italian cohort

[32], and adds the observation of higher titers during

relapse versus remission. Elevated antibodies against a

latency-promoting protein may be one mechanism leading

to the increased viral levels observed across many MS

cohorts. Another approach to investigating the immune

response against a specific viral protein is identification of

the antigenic target of anti-viral antibodies. In a recently

published study, Alenda and colleagues purified IgG from

the CSF of RRMS and PPMS patients, then incubated the

IgG with HHV-6 and characterized peptides of the bound

antigens. They reported that the peptides matched the

major capsid protein of HHV-6A, a structural protein

needed to assemble the viral capsid [33�]. This approach

provides a framework for exploring the antigenic targets of

HHV-6 antibodies, and whether there are differences

between the periphery and CSF, MS patients and controls

or MS patients in different stages of the disease.

HHV-6 status post-interferon treatment:
examining the influence of polymorphisms
A long-standing argument in support of a viral etiology of

MS is the effectiveness of interferon beta, a potent
Current Opinion in Virology 2014, 9:127–133 
antiviral [34]. Several studies published in the past few

years have formally examined the relationship between

interferon treatment and HHV-6 status in MS patients. In

a 2011 publication, Garcia-Montojo and colleagues

observed that patients with HHV-6 viral DNA in whole

blood and serum exhibited a higher risk of MS relapse and

comprised a lower proportion of IFN-beta-1b responders

[35]. These data agree with the many studies that detect

an increase in serum viral DNA during relapse compared

to remission, and add the observation of an inverse

correlation with IFN-beta responsiveness.

Several studies have adopted a gene-environment inter-

actions approach to the study of HHV-6 and interferon

therapy, correlating polymorphisms with HHV-6 status

and therapy responsiveness. For instance, Vandenbroeck

and colleagues reported elevated odds ratios for specific

polymorphisms of the transcription factor IRF5 (inter-

feron regulatory factor 5) and HHV-6 infection and inter-

feron responsiveness [36]. In a separate study, Garcia-

Montojo and colleagues studied polymorphisms in

MHC2TA, which encodes a transcriptional coactivator

of MHC class II genes, and reported significant differ-

ences in genotype frequency between MS patients with

and without detectable serum HHV-6 [37]. In a follow up

study, they observed that a significantly higher proportion
www.sciencedirect.com
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of MS patients with higher MHC2TA mRNA levels and

without detectable serum HHV-6 were clinical respond-

ers to interferon beta therapies compared to patients with

decreased MHC2TA mRNA levels and detectable serum

HHV-6. The authors concluded that MHC2TA mRNA

levels might be decreased by the active replication of

HHV-6 [38�]. Interestingly, human cytomegalovirus

(HCMV), a beta herpesvirus like HHV-6, has been

reported to decrease MHC2TA mRNA levels, resulting

in the suppression of MHC class II expression [39]. While

this study found no correlation between polymorphisms

and the development of interferon-neutralizing anti-

bodies [38�], future studies should examine polymorph-

isms that correlate with interferon-neutralizing antibodies

and HHV-6 viral DNA.

Potential mechanism of HHV-6 involvement in
MS: molecular mimicry with myelin
Associations of viruses with human demyelinating disease

and virally induced animal models of demyelination

provide compelling, though indirect, evidence of a viral

etiology of MS [19]. Additionally, studies of mechanisms

of demyelination and oligodendrocyte injury have

reinforced the idea that viruses can lead to MS or MS-

like pathology [5��]. One such mechanism is molecular

mimicry, whereby sequence homology between a

pathogen and a self-molecule leads to the generation of

an immune response that is cross-reactive between both

the pathogen and self. There is a stretch of identical

amino acids between HHV-6 U24 (an integral membrane

protein [40]) and human myelin basic protein (MBP),

which has bolstered the idea that molecular mimicry may

be at play in the relationship between HHV-6 and MS. In

2003, Tejada-Simon and colleagues reported that MS

patients, compared to healthy controls, exhibited a much

higher frequency of T cells that were reactive to both

(HHV-6 U24)1–13 and (MBP)93–105 [41]. These obser-

vations were recently confirmed in a cohort of Chinese

MS patients, in a 2012 study by Cheng and colleagues

[42].

While positive findings continue to provide an impetus to

study the role of HHV-6 in MS, much about the mech-

anisms remain unknown. Are elevated levels of HHV-6 in

MS a hallmark of an aberrant immune response or a

reflection of the failure of the immune response to contain

infection (Figure 2)? As inflammation can induce reacti-

vation in T cells trafficking through the CNS [19], to what

extent is the virus causal or simply a reactivated bypro-

duct of vast peripheral and CNS inflammation?

Controversy: findings and suggestions
Despite a publication bias toward positive results, not all

published reports of HHV-6 in MS are positive; several

recent studies have found a non-significant or low inci-

dence of HHV-6 in their respective MS populations. A

2014 study of South African MS patients and controls
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reported no difference between HHV-6 viral DNA detec-

tion in whole blood between MS patients and controls

[43]. Another study of Swedish patients reported a low

incidence of HHV-6 in the plasma and CSF of possible

MS patients compared to controls. These investigators

also detected a low incidence of HHV-6 in the serum

samples of IFN-beta treated MS patients, without any

difference between patients with or without neutralizing

antibodies [44]. Another study of a Tasmanian MS cohort

prospectively analyzed levels of HHV-6 IgM as a marker

of viral reactivation; the authors detected HHV-6 IgM in

only 1/198 patients, and concluded that HHV-6 reactiva-

tion does not drive relapse or disability in this MS

population [45].

Many factors can account for discordant results, including

differences in patient and control populations, technical

differences and the timing of sample acquisition, to name

a few. In a multitude of positive studies, HHV-6 appears

in only a subset of MS patients and yet, the findings are

often interpreted broadly. Investigators of both positive

and negative studies should carefully parse out charac-

teristics of the patient and control populations in ques-

tion, in an effort to foster hypothesis generation and

present more nuanced conclusions than HHV-6 is or is

not involved in MS.

Future directions
Ultimately, a controlled clinical trial of an efficacious

[CNS penetrable] anti-HHV-6 drug in MS may be the

only way to ascertain the involvement of this agent in MS

(it is important to consider that a positive outcome

demonstrating robust clinical efficacy would be persua-

sive, while a negative outcome would only add contro-

versy to the field). However, additional basic research on

the biology of HHV-6 — especially differences between

the two viruses that comprise this group [46�] — is

required for the discovery or development of such an

anti-viral. For example, several studies have reported

more HHV-6A relative to HHV-6B in MS patient

material [38�,47,48]. Understanding the properties of

each virus and knowing to what extent one or both are

involved in MS is crucial to furthering this field, and all

publications should diligently distinguish HHV-6A from

HHV-6B viral DNA sequences. Serological differen-

tiation between these two viruses is an active area of

research [49] and once validated, will provide great

insight into the relative antibody reactivity to each virus,

and importantly, the time of acquisition of HHV-6A. The

acquisition time of one or both viruses may be a factor in

MS development, as has been proposed for EBV [50].

Sequencing additional HHV-6 genomes may also lead to

a more thorough understanding of each virus. A

2013 study examined the oral shedding of EBV from

pediatric MS patients and controls, and reported that

changes in the predominant EBV variants were higher
Current Opinion in Virology 2014, 9:127–133
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in MS patients, suggesting a lack of immunologic control

of this virus [51]. Perhaps there are different frequencies

of HHV-6 variants between MS patients and controls? Or

perhaps there are HHV-6 variants that differ between

sites, for example the periphery and CNS? Studies of JC

virus have identified sequences that lend to its classifi-

cation as non-virulent (found in non-PML patients) or

virulent (found in the brain and CSF of PML patients)

[52]. As HHV-6 is at once ubiquitous and implicated in a

non-ubiquitous pathology, perhaps there are genetic var-

iants that are analogously associated with MS.

In conclusion, there is sufficient and compelling evidence

that HHV-6 may be involved, albeit to an unknown

extent, in the disease pathogenesis of a subset of MS

cases. To elucidate the possible mechanisms of HHV-6A

and/or HHV-6B involvement in this disease, or the

involvement of other herpesviruses, future studies are

encouraged to ask focused questions, using material from

well-characterized patient populations and well-matched

control populations.
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HHV-6 integrates its genome into telomeres of human

chromosomes. Integration can occur in somatic cells or

gametes, the latter leading to individuals harboring the HHV-6

genome in every cell. This condition is transmitted to

descendants and referred to as inherited chromosomally

integrated human herpesvirus 6 (iciHHV-6). Although

integration can occur in different chromosomes, it invariably

takes place in the telomere region. This integration mechanism

represents a way to maintain the virus genome during latency,

which is so far unique amongst human herpesviruses. Recent

work provides evidence that the integrated HHV-6 genome can

be mobilized from the host chromosome, resulting in the onset

of disease. Details on required structural determinants, putative

integration mechanisms and biological and medical

consequences of iciHHV-6 are discussed.
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Introduction
The genomes of human herpesvirus 6A (HHV-6A) and

HHV-6B consist of a single unique segment (U)

(�145 kbp) flanked by identical direct repeats (DR)

(�9kbp) [1–4]. The DRs are flanked by pac1 and pac2

sequences that are involved in the cleavage and the

packaging of the HHV-6 genome (Figure 1) [5,6]. Adja-

cent to the pac2 sequences is an array of telomeric repeats

(TMR) that are identical to the human telomere

sequences (TTAGGG). In proximity to pac1 is a second

telomere array, consisting of TMR that are disrupted by

other repetitive sequences, termed imperfect TMR

(impTMR) [3,6]. Intriguingly, TMR are found in several

lymphotropic herpesviruses belonging to the alpha, beta
www.sciencedirect.com 
and gammaherpesvirinae [1,3,7–12] as discussed in greater

detail below.

Although HHV-6A and HHV6B viral genome integration

occurs in several distinct chromosomes, it invariably takes

place within the telomeric region of the host chromo-

somes. The precise mechanism that facilitates integration

is still to be defined; however, the presence of TMR at the

ends of the viral genomes suggests that these sequences

are involved by directing integration into host telomeres.

A role for the U94 protein in HHV-6A and HHV-6B

integration has been proposed, but remains to be proven

experimentally. The relatively wide tropism of HHV-6A

and HHV-6B suggest that integration can take place in

many different cell types, including gametes. Integration

into gametes results in individuals carrying a copy of the

HHV-6 genome in every cell of their body. This condition

is referred to as inherited chromosomally integrated

HHV-6 (iciHHV-6) and is quite common as it is observed

in approximately 1% of the human population (50–70

million individuals) worldwide. iciHHV-6 should be dis-

tinguished from the commonly used term ciHHV-6 that

refers to the presence of integrated HHV-6 genomes,

regardless if this is inherited or not. Individuals with

iciHHV-6 will transmit the integrated HHV-6 genome

according to the Mendelian laws, meaning that 50% of the

descendants will inherit iciHHV-6. In this review, the

biology of viral integration, the possible medical con-

sequences associated with iciHHV-6 and priority research

areas will be discussed.

What is known about HHV-6 latency? Is
integration the default mechanism for genome
maintenance during latency for HHV-6?
One hallmark of all herpesviruses is that they not only

replicate in the infected host but also establish a lifelong

persistent infection termed latency. Latency is charac-

terized by the continued presence of the viral genome in

infected target cells but the absence of infectious virus

production. HHV-6 has been shown to establish a latent

infection in various cell types including early bone mar-

row progenitor cells [13], primary monocytes/macro-

phages [14], myeloid cell lines [15], an astrocytoma cell

line [16] and an oligodendrocyte cell line [17]. In most of

these cell types, HHV-6 genes involved in lytic replica-

tion are not express and the virus can reactivate,

suggesting that it is a quiescent rather than an abortive

infection. The target cells differ between HHV-6A and

HHV-6B, but more work needs to be done to define the

true latency reservoir of both viruses.
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Figure 1
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Schematic representation of the HHV-6 genome. The unique region (U)

of the HHV-6 genome (140 kbp) is flanked by two identical direct repeat

sequences (10–13 kbp) referred to as DRL and DRR. The DRs contain

pac1 and pac2 sequences, perfect (TMR) and imperfect (impTMR)

telomeric sequences (TMR) and several open reading frames (not

shown). The genome is not drawn to scale.
During latency, a limited number of transcripts are

expressed. Four latency-associated transcripts encoded

from the HHV-6 IE1/IE2 locus, are highly spliced and

only expressed in latently infected cells in vitro and in
vivo [18]. It has been proposed that these transcripts give

rise to three latency-associated proteins termed ORF99,
Figure 2
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infected cells remain in the host for life, but the virus is not transmitted via the
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50% of their offspring according to the Mendelian laws of inheritance.
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ORF142, and ORF145; however no experimental evi-

dence that confirms their expression is available yet.

Furthermore, U94 has been shown to be expressed during

latency, even at higher levels compared to lytically

infected cells [19]. The U94 protein also blocks viral

gene expression in infected lymphocytes in culture

[19,20], suggesting that U94 is involved in the establish-

ment and/or maintenance of latency.

As mentioned above, HHV-6 has been shown to integrate

its genome into host telomeres of latently infected cells

(Figure 2). Integration of HHV-6 also occurs upon infec-

tion of various cell lines including JJhan and Molt-3 T-cells

[21��,22], the human embryonic kidney cell line HEK293

[21��,23]. Integration of HHV-6 is not a dead end, as virus

reactivation can be induced in cells that harbor the inte-

grated virus genome using the HDAC inhibitor trichostatin

A (TSA) or tetradecanoylphorbol-acetate (TPA) [14].

While most herpesviruses maintain their genome as a

circular episome in latently infected cells, no episomal

copies of the HHV-6 genome were detected [21��,22].

Since only the integrated form of the HHV-6 genome is

present during latency, it is likely that integration is the

default mechanism for genome maintenance in this phase
Individual with latently
infected cells

No gametes
carry ciHHV6

Half of gametes
carry ciHHV6

Embryo and adult carry
HHV-6 in the germ line
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 primary HHV-6 infection early in life, the virus infects somatic cells such

egrate its genome and establish latency in these cells. Some latently

 germ line. In addition, HHV-6 is able to infect germinal cells (lower panel).

t harbors the virus in the germ line. These individuals pass on iciHHV-6 to
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Figure 3
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Hypothetical models leading to HHV-6 genome integration into host chromosomes. (a) A model based on break-induced homologous recombination

(BIR) would allow invasion of 30 end of the chromosome into the viral genome at the DRR TMR, followed by stand displacement and copying of the viral
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of infection; however, further work needs to be done to

determine whether latency can be achieved without integ-

ration, i.e. as a viral episome, to decipher the integration

mechanism and to understand how the virus genome is

mobilized during reactivation.

What is the underlying mechanism of
integration? Which cellular and viral factors
are potentially involved in the process?
The termini of eukaryotic chromosomes consist of con-

served structures termed telomeres that protect the genetic

information from terminal deterioration. Vertebrate telo-

meres consist of 7–10 kb hexameric repeats (TTAGGG)n

that are associated with a number of proteins. During DNA

replication, the terminal portion of the telomeres is not

completely copied due to the end replication problem. To

counteract this shortening, certain cell types express the

telomerase complex, which extends the telomeres by the

addition TMR sequences to the terminus.

Intriguingly, the HHV-6A and HHV-6B genomes contain

TMR at their termini (Figure 1). The fact that HHV-6A

and HHV-6B integration invariably occurs in the telo-

meric region of human chromosomes, suggest that hom-

ologous recombination (HR) events between host and

viral TMR could facilitate integration.

Chromosome ends have a 30 single-stranded G-rich

(TTAGGG) overhang that is 30–500 nucleotides in

length [24–26]. To avoid recognition as double-stranded

DNA (dsDNA) break, the 30 protruding end folds back

and invades the duplex telomeric DNA to generate a T-

loop structure [27–29]. A total of six proteins referred to as

the shelterin complex, bind and assist with T-loop for-

mation, stabilize chromosomal ends and prevent DNA

damage responses [30]. Sequencing of the HHV-6 integ-

ration sites indicated that the DRR region of the viral

genome is fused to the chromosome [31��]. The pac2

region at this extremity is lost during the integration

process. In addition, the pac1 sequences at the other

end of the viral genome (DRL) are also lost and the viral

TMR are extended with TTAGGG repeats [31��].

One model for HHV-6 integration compatible with this

structure is based on the DNA repair mechanism referred

to as break-induced replication (BIR). BIR is a HR path-

way that facilitates the repair of DNA breaks that have

only one end, contributing to the repair of broken replica-

tion forks and allowing telomere lengthening in the

absence of telomerase. BIR has been described in various
( Figure 3 Legend Continued ) genome. The terminal pac1 sequence would

telomere sequences at the end. This integration process could occur indepen

its 30–50 exonuclease activity, U94 could process the ends of the viral geno

unfold. This would generate compatible ends that could facilitate annealing 

strands would be completed by cellular polymerases/ligases. The terminal p

used to restore telomere sequences at the end.
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organisms including viruses, bacteria, and eukaryotes

(reviewed in [32]). In the context of HHV-6 integration,

BIR could be initiated by invasion of the 30 single strand

chromosomal end into the dsDNA linear HHV-6 genome

at the TMR sites, followed by DNA synthesis that would

continue to the end of the viral genome (Figure 3a). Upon

cell replication and division, the 26–28 nucleotide pac1

sequences could erode until the TMR region is encoun-

tered. TMR could then serve as template for telomerase,

as recently reported [33]. It remains unknown which

cellular/viral proteins could participate in this BIR-de-

pendent HHV-6 integration. Considering that BIR is a

process that can occur independently of infection, one

would argue that viral proteins are dispensable. If HHV-6

integration occurs through BIR, other herpesviruses that

possess TMR could use the same mechanism to insert

their genome into telomeres of host chromosomes.

A second model for HHV-6 integration is based on the

putative integrase HHV-6 U94. U94 encodes a 490 amino

acid protein and is unique to HHV-6A and HHV-6B. It

has homology (24% identity) to the Adeno-Associated

parvovirus (AAV) Rep78/68, a non-structural protein that

is essential for AAV integration into chromosomes 19 [34–
36]. Besides the similarity, U94 contains the conserved

domains of Rep78/68 including the DNA binding and

endonuclease domain at the N-terminus as well as the

helicase and ATPase domains at the C-terminus [22].

Considering that Rep78/68 is essential for AAV integ-

ration and that U94 expression can complement an AAV

Rep78/68 deletion mutant [37] suggests that U94 may play

a role in HHV-6 integration. U94 possesses single-stranded

DNA binding activity [20,38,39] and interacts with the

TATA-binding protein [39]. Recent studies indicate that

U94 binds telomeric DNA sequences and behaves as a 30–
50 exonuclease (Trempe and Flamand, unpublished data).

A model for U94-dependent integration of HHV-6 into

human telomeres is proposed in Figure 3b. Through its

DNA-binding and exonuclease activities, U94 would inter-

act with the D-loop structure and remove the protected

invading chromosomal end. This would result in the dis-

ruption of the T-loop structure and the generation of a 30

recessed chromosome end. Simultaneously, U94 would

attack the HHV-6 genome from its extremities generating

a 50 overhang at the DRR that is complementary to that of

the chromosome. These strands would anneal and poly-

merases/ligases would fill and close the gaps. As described

for the BIR integration, the pac1 at the DRL end would be

lost by erosion followed by telomeric extension using the

viral TMR as template.
 be lost by erosion and the adjacent TMR could be used to restore

dently of viral proteins. (b) U94-dependent integration process. Through

me and the telomeric D-loop structure, causing the T-loop structure to

of the virus genome and the host chromosome. Upon annealing, the

ac1 sequence would be lost by erosion and the adjacent TMR could be

www.sciencedirect.com
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Do the HHV-6 telomeric repeats facilitate
integration into host telomeres? Are other
herpesviruses that harbor TMRs able to
integrate into the host genome?
As mentioned above, the HHV-6 genome harbors two

TMR arrays within the DR regions: the perfect TMR at

the right end and the imperfect TMR at the left end of

the DR (Figure 1). The number of TMRs varies from

15 to 180 copies in clinical isolates [3,6,9,40]. It has been

proposed that the TMR are involved in HHV-6 integ-

ration; however, no experimental evidence has been

published yet. Deletion of the TMR in the HHV-6

genome resulted in a virus that replicates comparable

to parental and revertant viruses (Wallaschek and Kaufer,

unpublished data), indicating that the TMR are dispen-

sable for lytic replication. Integration analyses of recom-

binant viruses that lack the TMRs are currently under

investigation.

Besides Marek’s disease virus (MDV) and HHV-6, a

number of other herpesviruses harbor TMRs [41]. Among

them are more than a dozen herpesviruses from the

Herpesviridae and Alloherpesviridae family. These include

members of the alphaherpesvirinae subfamily such as

MDV, herpesvirus of turkeys and duck enteritis virus,

the betaherpesviruses HHV-6A, HHV-6B and human

herpesvirus 7 (HHV-7) as well as the gammaherpesvirus

equine herpesvirus 2. Even the distantly related allo-

herpesviruses cyprinid herpesvirus 1–3 that infect var-

ious fish species including carp, gold fish and koi, harbor

TMR at both ends of their genome. The conserved

nature of the TMR in various herpesviruses suggests an

important function of those repeat sequences. Integ-

ration into host telomeres was so far only shown for

MDV, HHV-6A and HHV-6B [21��,23,42�], but it is

likely that also other herpesvirus containing TMRs in

their genome integrate their genetic material. It was

recently shown that the viral TMRs can facilitate integ-

ration of the virus genome into host telomeres using

MDV as a model for herpesvirus integration in vitro and

in vivo [42�]. As HHV-6A and HHV-6B also integrate

into telomeres it is very likely that the viral TMRs are

also involved in this process as proposed for the two

integration models above. The closely related HHV-7

has not been reported to integrate into host chromo-

somes so far. In contrast to HHV-6, HHV-7 has a very

narrow tropism as it infects only CD4 expressing cells

[43]. Since only few cells are latently infected with

HHV-7, it is very difficult to identify these cells to

determine the status of the virus genome within an

individual. Intriguingly, HHV-7 does not encode a

homologue of U94, suggesting that this protein might

be the decisive factor for integration.

Another open question is whether germ line integration

also occurs with herpesviruses other than HHV-6A and

HHV-6B. In case of HHV-7, the virus likely does not
www.sciencedirect.com 
infect gametes as they do not express CD4, providing a

possible explanation why germ line integration was not

observed for this herpesvirus so far. A recent report

demonstrated that tarsier monkeys carry an endogenous

herpesvirus closely related to HHV-6 in their genome

termed Tarsius syrichta roseolovirus 1 [44]. Unlike

HHV-6, the genome of the tarsier monkey virus con-

tains several mutations raising doubts that functional

viruses could reactivate from the integrated state.

Future studies should address if other herpesviruses

that harbor telomeres are also able to integrate into the

germ line.

Inherited chromosomally integrated HHV-6:
major issues and top research priorities
Undoubtedly, the ultimate question is whether iciHHV-

6 represents a risk factor in disease development. It is

now well established that the self-renewal potential of

cells is directly linked to telomere length and telomerase

activity [45,46]. It is also known that the shortest telo-

mere, not average telomere length, is critical for cell

viability and chromosome stability [47]. Recent work

by Huang et al. indicates that chromosomes carrying

integrated HHV-6 often have the shortest telomeres

[31��]. Once the number of telomeric repeated sequence

(TMR) is reduced to 13, chromosomal instability is

observed [48]. Several diseases are linked to telomere

dysfunctions and/or telomerase mutations such as hema-

topoietic dysfunction, pulmonary fibrosis, liver disease,

degenerative diseases and cancer [49–59]. Alterations

within telomeric regions are therefore a likely cause

for cellular dysfunctions linked to diseases. Intriguingly,

Pellett et al. reported that iciHHV-6 is 2.3� more fre-

quent (P < 0.001) in diseased (various diseases) individ-

uals relative to healthy ones [60]. One potential caveat of

this study is that the data was pooled from several small

independent studies. The fact that the prevalence of

iciHHV6+ individual varies between 0.2% and 2.9%

depending on the geographical regions and population

sampled (healthy versus diseased) likely affected the

outcome of the study. Sampling of a large cohort

(n = 50 000 subjects) of individuals aged over 40, when

the prevalence of disease is greater, and from a region

where the population is relatively homogenous (to mini-

mize confounding factors) would represent an almost

ideal way to address the clinical aspects of iciHHV-6.

Access to medical records is key for such analyses. By

comparing the prevalence of specific diseases in iciHHV-

6 versus non-iciHHV-6 individuals, risk factors could be

estimated. Once identified, more precise questions per-

taining to the mechanisms causing disease could be

addressed. In addition, integration of the virus in non-

iciHHV-6 patients during latency could also alter cellular

function of target cells such as T cells, monocytes,

neuroglial cells. This could also influence co-infections

with other pathogens or increase the risk of autoimmune

disease.
Current Opinion in Virology 2014, 9:111–118
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Another area worth investigating is the ability of HHV-6

to infect gametes. To facilitate incorporation into the

germ line, HHV-6 must infect gametes and integrate

its genome into a host chromosome. This integration

most likely occurs in an ovum or sperm progenitor cells,

thereby increasing the likelihood transferring the HHV-6

genome into an embryo. Intriguing work by the Hollsberg

group indicates that HHV-6 is present in sperm of healthy

males and that the virus can bind to sperm cells. This

binding mechanism would allow transport of the virus

along with the sperm cells to the ovum [61�]. Another

possibility is that HHV-6 can reactivate from infected

sperm cells and spread to a fertilized egg cell. Whether a

haploid chromosome content influences integration

remains unknown. Clearly more work on this subject is

needed to fully appreciate the initial steps leading to

iciHHV-6.

Lastly, the mechanism that allows mobilization of the

integrated HHV-6 genome, resulting in reactivation and

pathogenesis, remains a fundamental question. Recent

studies in vitro [21��] and in vivo [63�] provided some

evidence that integrated HHV-6 can indeed mobilize its

genome and reactivate. Two reports suggest that viral

excision could occur through the formation of T-circles

[31��,62]. These T-circles would arise from recombina-

tion events between HHV6 DR regions and result in the

generation of a full length circular viral genome contain-

ing a single DR. This genome would then serve as

template for rolling-circle replication of the virus genome,

resulting concatemeric viral DNA. Further convincing

evidence was recently provided by Endo et al. that

reported pathogenesis from reactivated iciHHV-6A in a

Japanese infant with X-SCID [64��]. The profound

immunosuppression observed in X-SCID was most likely

a key-contributing factor for the observed uncontrolled

viral replication. From these observations, two major

research priorities emerge. First, in the absence of safe

and highly effective anti-HHV-6 drugs, the development

of immunotherapeutic approaches to prevent/control

HHV-6 reactivation is warranted. HHV-6 specific T cells

recognizing peptides derived from the U11, U54 and IE1

proteins have recently been identified [65–68]. Whether

these could prevent HHV-6 reactivation and disease

should be addressed in a clinical setting. The second

research priority relates to the transplantation of organs

derived from iciHHV-6+ individuals. Even though almost

everyone is already infected with HHV-6, the burden of

latently infected cells is likely minimal compared to the

number of HHV-6-infected cells introduced upon trans-

fer of organs such as kidneys, livers or even bone marrow

cells from an iciHHV-6+ donor. Organs from iciHHV-6+

donors would represent an important reservoir of latently

infected cells, possibly reactivating considerable amounts

of HHV-6. In addition, cells of iciHHV-6 patients are

known to express viral RNAs in the absence of reactiva-

tion. Cells expressing HHV-6 proteins would be attacked
Current Opinion in Virology 2014, 9:111–118 
by the immune system, which could explain, at least in

part, idiopathic chronic organ rejection. Realizing that the

demand for organ exceeds organ donation, monitoring of

iciHHV-6 status of organ donors should be determined

prior transplantation to avoid adverse effects and ensure

proper diagnosis and treatment by the clinicians.

Conclusion
Initially considered an oddity among virologists, HHV-6

integration is now considered a part of the natural HHV-6

life cycle. Establishment of latency by integration of the

virus genome into host chromosomes allows HHV-6 to

minimize detection by immune effector cells, ensuring its

long-term persistence. It should be pointed out that

HHV-6 integration has so far been only observed in

iciHHV-6 individuals. The search for cells carrying inte-

grated HHV-6 from a non-iciHHV-6 is still ongoing.

Recent advances have started to unravel how these

viruses might excise themselves from the integrated

state. Although the processes leading to integration

remain elusive for the most part, the medical con-

sequences associated with iciHHV-6 are now starting

to be recognized as a risk factor for disease development.

Large-scale population studies and systemic monitoring

of iciHHV-6 status would provide conclusive answers to

the biological and medical consequences associated with

iciHHV-6.
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Progress in the identification of suitable animal models for

human herpesvirus (HHV)-6A and HHV-6B infections has been

slow. Recently, new models have been established, mainly for

HHV-6A, which reproduce some pathological features seen in

humans. Neuroinflammatory signs were observed in infected

marmosets and CD46-transgenic mice; although viral

replication was not prominent, persistence of viral DNA and

specific immunologic responses were detected, suggesting an

immune-mediated pathogenic mechanism. Pig-tailed

macaques showed robust viral replication concomitant with

acute-phase symptoms, and provided a model to study the

effects of HHV-6A on AIDS progression. In humanized mice,

viral replication was less evident, but infection led to T-cell

alterations. Altogether, these recent developments have

opened new perspectives for studying the pathogenic role of

HHV-6A in humans.
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Introduction
HHV-6A and HHV-6B are members of the betaherpes-

virus subfamily, and humans are their only known natural

host. HHV-6A and HHV-6B share many properties with

other herpesviruses, including the establishment of a

persistent latent infection characterized by highly

restricted viral gene expression, and the ability to reacti-

vate from latency to produce infectious virus. Although
www.sciencedirect.com 
originally categorized as two variants, HHV-6A and HHV-

6B were recently re-classified as independent viruses

based upon differences in epidemiology, tropism, and

disease associations [1]. CD46 serves as the main cellular

receptor for HHV-6A [2], while CD134 was recently

identified as a novel receptor for HHV-6B [3]. In vivo
tropism of these viruses includes CD4+ T cells, epithelial

cells in salivary glands and liver, endothelial cells, and

cells of the central nervous system (CNS) [4]. HHV-6A

replicates in neural cells in culture more efficiently than

HHV-6B and is thought to be overall more neurotropic

[5].

HHV-6B infection is very common in the human popu-

lation worldwide, with a very high seroprevalence (>90%)

by age two [6]. Acute primary HHV-6B infection can

result in exanthem subitum [7], a childhood febrile dis-

ease accompanied by a rash and, in rare cases, by febrile

convulsions. No disease association has been firmly estab-

lished for HHV-6A, although evidence suggests a role in

hematopoietic stem cell and solid organ transplant com-

plications [8], graft-versus-host disease [9], and multiple

sclerosis [10,11]. Disease manifestations by both HHV-

6A and HHV-6B are often correlated with host immuno-

suppression, which may promote viral reactivation from

latency. The prevalence of HHV-6A infection is still

largely undefined due to a lack of serological assays that

can clearly distinguish between HHV-6A and HHV-6B

infections.

The lack of animal models that efficiently support HHV-

6A or HHV-6B replication has long hindered studies of

viral pathogenesis. The focus of this review is on recent

work aimed at developing new animal models that sustain

HHV-6A and/or HHV-6B replication, which may help to

better understand the pathogenic mechanisms of these

viruses in humans.

New animal models of neuropathology
Marmoset model

Recently, a marmoset (Callithrix jacchus) model was devel-

oped to study HHV-6A and HHV-6B infections [12��].
Marmosets that received multiple intravenous injections of

HHV-6A developed neurological symptoms, including

motor weakness and sensory abnormalities, associated with

the development of virus-specific antibody responses and

with the presence of histopathological lesions in the CNS,

primarily microgliosis. Viral DNA was detected in the brain

of HHV-6A-infected and HHV-6B-infected animals,

confirming the neurotropism of both viruses. However,
Current Opinion in Virology 2014, 9:97–103
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while HHV-6A infection led to evident neurological symp-

toms, infection with HHV-6B remained asymptomatic.

Surprisingly, HHV-6A infection through the intranasal

route also remained completely asymptomatic and elicited

limited, if any, antibody responses despite detectable

levels of plasma viremia. The correlation between the

development of neurological signs and the elicitation of

virus-specific humoral immune responses in this model

suggests a possible immune-mediated pathogenic mech-

anism rather than a direct neuropathic effect of HHV-6A

infection. This study provided the first conclusive in vivo
evidence that HHV-6A infection is able to trigger neuro-

logical disease.

CD46 transgenic mouse model

Since monkey experiments are often limited by ethical

constraints and elevated costs, efforts were made in last

few years to develop mouse models of HHV-6-associated
Figure 1

HHV-6 (p41)

DAPI

HHV-6A infection of primary murine glial brain culture from CD46 trangenic mi

were co-cultured with HHV-6A-infected HSB2 cells as described [13��]. Seve

adherent cells were removed, and adherent cells were fixed and analyzed for 

with antibodies against HHV-6 proteins (green) p41 (A-C) or gp116 (D), and 

stained with DAPI (blue).
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neuropathology. The human transmembrane comp-

lement regulatory protein CD46 was identified as the

receptor for HHV-6A entry into host cells [2], opening

novel possibilities to develop humanized murine models

of HHV-6A infection. Recently, it has been demonstrated

that intracranial and intraperitoneal infection of CD46

transgenic mice with HHV-6A results in long-term per-

sistence of viral DNA in the brains of infected animals,

followed by lymphocyte infiltration and upregulation of

the chemokine CCL5/RANTES, in the absence of clini-

cally apparent signs of disease [13��]. In the presence of

HHV-6A-infected human lymphocytes, transgenic murine

primary brain cultures were shown to produce viral proteins

and develop syncytia (Figure 1); however, viral RNA and

proteins have not been detected in vivo in mice. Infection

with HHV-6B did not yield any signs of viral replication in

transgenic murine CD46 transgenic cells either in vitro or in
vivo, probably due to the main utilization of another
GFAP

merged
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ce. Primary murine brain glial cells generated from CD46-transgenic mice

n days after the establishment of the co-culture, supernatants and non-

the presence of viral antigens by confocal microscopy. Cells were stained

glial fibrillary acidic protein (GFAP) antibody (red) and cell nuclei were
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recently identified entry receptor, CD134 [3]. The

secretion of a panel of chemokines was increased after

HHV-6A infection of transgenic primary murine brain glial

cultures and the induced chemokine expression was inhib-

ited when TLR9 signaling was blocked. These results

described the first murine model for HHV-6A-induced

brain infection and highlighted the potential importance

of the TLR9 pathway in HHV-6A-initiated neuroinflam-

mation, opening novel perspectives for the study of virus-

associated neuropathology.

New animal models of immunomodulation
and immunodeficiency
Pig-tailed macaque model

Various non-human primate species have been studied in

the past for their susceptibility to HHV-6A, HHV-6B and

HHV-7 infections with limited success [14] and (Lusso

et al., unpublished), reflecting the inefficient in vitro
replication of these viruses in primary lymphocytes from

the same animals [15]. However, the pig-tailed macaque

(Macaca nemestrina) was singled out for its ability to

sustain HHV-6A replication with human-like efficiency

both in vitro [16] and, more recently, in vivo [17��].
Intravenous inoculation of HHV-6A into naı̈ve pig-tailed

macaques resulted in a rapid appearance of plasma vir-

emia and viral RNA transcription in lymph nodes, associ-

ated with transient clinical manifestations such as fever,

lymphadenopathy and, in one animal, cutaneous rash;

IgG antibody seroconversion ensued after approximately

3 weeks of inoculation [17��]. After the acute phase,
Figure 2

(a)

Enhanced replication of SIV in lymph nodes from HHV-6A-co-infected pig-tai

singly infected with SIVsmE660 (A) or dually infected with SIV and HHV-6A 

architecture is conserved and low levels of SIV RNA (purple signal) are visib

reactive germinal centers. In tissue from the dually infected animal, a florid fo

with HHV-6A induced a dramatic acceleration of disease progression towar
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HHV-6A infection entered a clinically latent state, ana-

logous to observations in healthy children, and no long-

term clinical or immunological alterations were detected,

except for the occasional finding of transient, low-level

plasma viremia. These results reproduced the main vir-

ological, immunological, and clinical features of acute

HHV-6B infection in humans (to date, no definitive data

are available for acute HHV-6A infection), suggesting

that pig-tailed macaques may represent a reliable exper-

imental model for these viruses.

The pig-tailed macaque model was also instrumental for

investigating the in vivo interactions between HHV-6A

and simian immunodeficiency virus (SIV), the monkey

homologue of human immunodeficiency virus (HIV).

Animals co-infected with HHV-6A and SIV showed a

dramatic acceleration of SIV-disease progression toward

full-blown AIDS, associated with early depletion of both

CD4+ and CD8+ T cells and increased SIV expression in

lymph nodes (Figure 2); interestingly, as seen in immu-

nodeficient humans, frequent HHV-6A plasma viremia

was observed in co-infected animals, concomitant with a

progressive deterioration of the host immunologic

defenses [17��]. These results provided the first in vivo
evidence for an accelerating effect of HHV-6A on AIDS

progression.

RAG-hu mouse model

Humanized mice are an attractive model for the study

of human viral pathogens because they produce human
(b)
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led macaques. In situ hybridization in lymph node tissues from macaques

(B). In tissue from the animal singly infected with SIV, the overall

le throughout the parenchyma, with little, if any, specific signal within

llicular hyperplasia is visible with an intense SIV RNA signal. Co-infection

d full-blown AIDS.
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target cells and can generate human anti-viral immune

responses. In the humanized Rag2�/�gc�/�mouse (RAG-

hu) model, human CD34+ hematopoietic stem cells are

extracted from cord blood or fetal liver and injected into

neonatal immunodeficient mice. Engrafted animals pro-

duce a variety of human lymphoid and myeloid cells,

including CD4+ T cells, which are major target cells for

HHV-6A.

Recent data show that RAG-hu mice can be infected with

HHV-6A following intraperitoneal injection of either cell-

free or cell-associated virus, with persistence of viral DNA

in blood and lymphoid organs [18��]. Viral DNA was

detected only sporadically in plasma and blood cells,

possibly due to inefficient replication and establish-

ment of latent infection. The bone marrow was positive

for viral DNA in all animals tested at 1 week post-

infection. Brain infection has not yet been examined,

although human immune cells have been detected in

the brain of humanized mice, accompanied by HIV-1

penetration, after peripheral HIV-1 inoculation [19].

Human thymocyte populations were modified after

peritoneal inoculation of HHV-6A, indicating cyto-

pathic effects in that organ. The CD3+CD4� and

CD3�CD4+CD8� populations were depleted in

infected animals (Figure 3). Interestingly, depletion

of the CD3�CD4+CD8� thymocyte population had

previously been observed in a SCID-hu thy/liv huma-

nized mouse model where HHV-6A or HHV-6B was

injected directly into the thymic organoid [20]. A

possible contributing mechanism  is CD3 downregula-

tion, which has previously been reported in peripheral

blood T cells [21] and in cells extracted from lymphoid

tissues [22] and is likely mediated by the viral U24

protein [23]. An unusual finding in infected RAG-hu

mice was an elevated proportion of CD3+CD4+CD8+ T

cells in blood, as compared to mock-infected animals.

While the origin of these cells is still unclear, HHV-6A

infection can promote expression of CD4 on cells that

do not normally express it [24]. Thus, it is possible that

these cells were either infected with HHV-6A, or trig-

gered to exit the thymus prematurely (most CD4+CD8+

cells reside in thymus).

Taken together, the findings in infected RAG-hu mice

suggested that HHV-6A has a natural tropism for the

human thymus and bone marrow, and that infection

leads to alteration of T lymphocyte subpopulations.

Depletion and/or alteration of specific thymocyte sub-

sets may play an important role in HHV-6A-induced

immunomodulation and the ability of this virus to

persist in the host.

Conclusions and future perspectives
The predominantly latent nature of human roseolovirus

infections and our ignorance of the mechanisms that

control such viruses in vivo have made studies in animal
Current Opinion in Virology 2014, 9:97–103 
models particularly challenging. Nevertheless, new

animal models to study pathology induced by HHV-6A

and HHV-6B have been developed during the last decade

(Table 1). Although they do not mimic entirely all aspects

of the human infections, these models have provided

some important insights into the neurological and

immunological disorders associated with these viruses.

Work in the marmoset model showed neurological

symptoms in association with HHV-6A infection. A

correlation between HHV-6A infection and multiple

sclerosis (MS) has been noted for some time, specifi-

cally with increased detection of viral nucleic acids and

anti-viral antibody responses in MS patients [25,26].

Further work in the marmoset model may yield

additional insights into the role of HHV-6A in this

disease whose etiology remains poorly understood.

The CD46 transgenic mouse model has further illus-

trated the potential for neurologic disease associated

with HHV-6A in humans by demonstrating that various

proinflammatory chemokines are upregulated after in-

fection both in vivo and in vitro and that immune cells

respond to HHV-6A infection in the brain. The TLR9

pathway was identified as a pathway responsible for

chemokine upregulation and has been implicated in a

different animal model of MS [27], thus providing

additional evidence that HHV-6A may be linked to

the development of MS.

The recent findings in RAG-hu mice have provided in
vivo evidence to support a role for HHV-6A in immuno-

suppression associated with alterations of thymocyte

populations. Since the thymus is responsible for T cell

development, this may represent a novel mechanism for

viral persistence by manipulating T cells before they

become functional. The ramifications of thymocyte

depletion are currently unclear, but could promote gener-

alized immunosuppression. In addition, macaque studies

have provided in vivo evidence to support the hypothesis

that HHV-6A co-infection leads to more rapid AIDS

progression in HIV-infected individuals. Further studies

are required to firmly establish a role for HHV-6A in

human immunosuppression in vivo; however, if a role for

this virus in AIDS progression is confirmed, HHV-6A may

represent an important new drug target for AIDS treat-

ment.

More animal models have been described for HHV-6A

than for HHV-6B infection, possibly reflecting the con-

servation and ubiquitous distribution of the main HHV-6A

receptor, CD46. The recent identification of the immu-

noregulatory molecule CD134 (OX40), which is expressed

predominantly on activated human T cells, as a novel

receptor for HHV-6B [3] will certainly lead to the de-

velopment of additional models for this virus, including

transgenic mice. The absence of CD134 expression on

CNS cells may explain the apparently lower neurotropism

of HHV-6B, compared to HHV-6A; whether and to what
www.sciencedirect.com
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Figure 3
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Alteration of thymocyte populations in humanized mice after HHV-6A infection. RAG-hu mice were infected with HHV-6A (or mock infected) and

thymocytes were collected at 7.5 wpi and analyzed by flow cytometry. The CD3+CD4� population is depleted in HHV-6A infected animals (A) but

not in mock infected animals (B). Gating in panels A/B was on lymphocytes, and data were normalized to the sum of gates R2/R3/R20. The

CD4+CD8� population is depleted in HHV-6A infected animals (C) but not in mock infected animals (D). Data in panels C/D were not gated and

were normalized to the sum of gates R13/R14/R24. Although changes in the CD4�CD8+ and CD4�CD8� populations can be seen in this

representative case, these findings were not statistically significant for the entire group of animals.
extent at least some strains of HHV-6B can also utilize

CD46 as a receptor, as previously reported [2], remains

uncertain. The availability of suitable animal models,

especially murine models for which a wide array of
www.sciencedirect.com 
experimental tools are available, should facilitate further

studies of virus–host interactions and pathogenesis and

open novel perspectives for devising effective therapeutic

and preventive approaches for HHV-6A and HHV-6B.
Current Opinion in Virology 2014, 9:97–103
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Table 1

New animal models recently established to study HHV-6A and HHV-6B pathogenesis

Model

[reference]

Virus(es)

studied

Route

of infection

Major pathologic findings Disadvantages

Pig-tailed macaques

[17��]

HHV-6A Intravenous Acute-phase symptoms, robust

viral replication, antibody responses,

accelerated AIDS progression

Costly, ethical constraints

Marmosets

[12��]

HHV-6A

and HHV-6B

Intravenous CNS pathology (HHV-6A only),

antibody responses

Low viral replication, costly,

ethical constraints

Humanized

Rag2�/�gc�/� mice

[18��]

HHV-6A Intraperitoneal Viral DNA persistence in blood,

antibody responses, alteration

of human thymocyte and T cell

populations

Low viral replication

huCD46-transgenic

mice

[13��]

HHV-6A Intracranial +

intraperitoneal

Long-term viral DNA persistence

in CNS, antibody responses, CNS

production of pro-inflammatory

cytokines

Low viral replication
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The roseoloviruses, human herpesvirus-6A -6B and -7 (HHV-

6A, HHV-6B and HHV-7) cause acute infection, establish

latency, and in the case of HHV-6A and HHV-6B, whole virus

can integrate into the host chromosome. Primary infection with

HHV-6B occurs in nearly all children and was first linked to the

clinical syndrome roseola infantum. However, roseolovirus

infection results in a spectrum of clinical disease, ranging from

asymptomatic infection to acute febrile illnesses with severe

neurologic complications and accounts for a significant portion

of healthcare utilization by young children. Recent advances

have underscored the association of HHV-6B and HHV-7

primary infection with febrile status epilepticus as well as the

role of reactivation of latent infection in encephalitis following

cord blood stem cell transplantation.
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Introduction
Roseoloviruses include human herpesvirus-6A, -6B and -7

(HHV-6A, HHV-6B and HHV-7), which constitute the

Betaherpesviridae subfamily of human herpesviruses along

with human cytomegalovirus (HCMV). HHV-6 was first

isolated from immunocompromised adults in 1986 by Sal-

ahuddin and colleagues [1]. Initially two distinct variants of

HHV-6 were identified, HHV-6A and B with HHV-6B

causing disease in developed countries. The two variants

were officially classified as separate viruses in 2012 [2].

As with all human herpesviruses, following primary in-

fection HHV-6 and -7 establish latent or persistent
www.sciencedirect.com 
infection in different cell types, have the ability to reac-

tivate, and may be intermittently shed in bodily fluids [3].

Unlike other human herpesviruses, HHV-6A and HHV-

6B are also found integrated into the host genome

(ciHHV-6). Integration has been documented in 0.2–
1% of the general population and along with latency

has confounded the ability to correlate the presence of

viral nucleic acid with active disease [4].

The syndrome known as roseola infantum was reported as

early as 1809 by Robert Willan in his textbook ‘On

cutaneous diseases’ [5]. This clinical entity is also com-

monly referred to as exanthem subitum and early pub-

lished descriptions of the disease still hold true. It is an

illness that affects children by the age of three and is

marked by the abrupt development of high fever lasting

three to five days. The hallmark maculopapular rash

appears as the fever subsides, and there may be few, if

any, associated symptoms. Despite knowledge of this

common disease of infancy, the etiologic agent was not

identified until 1988 by Yaminishi and colleagues [6].

They demonstrated both the presence of circulating virus

in peripheral blood mononuclear cells (PBMCs) during

acute roseola and subsequent seroconversion during con-

valescence in four infants in Japan. It was nearly a decade

later before our understanding of the full clinical spec-

trum of HHV-6 primary infection was expanded past

roseola.

Recognition of primary infection with HHV-6 is import-

ant because the high prevalence of infection and its

association with fever leads to substantial healthcare

utilization. Primary infection in childhood is also strongly

associated with neurologic complications, and reactiva-

tion of the latent virus under immunosuppressive con-

ditions has been associated with significant morbidity.

This review discusses the spectrum of clinical disease

associated with roseolovirus primary infection, highlight-

ing recent advances.

Epidemiology
The ubiquitous nature of infection with HHV-6 is evi-

denced by the fact that all newborns have passive

maternal antibody to HHV-6 which typically wanes by

four to six months of age, with primary infection occur-

ring fairly soon thereafter [7–9]. The young age of

primary HHV-6 infection was demonstrated in a pro-

spective study by Hall and colleagues of children with

fever seen in the emergency department (ED) in Roche-

ster, NY [7]. Utilizing viral isolation and seroconversion,

HHV-6B was identified as the causative agent of illness

in 159 of 1553 children less than 24 months of age, while
Current Opinion in Virology 2014, 9:91–96
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only one child out of 100 at 25–36 months of age had fever

due to primary HHV-6B infection. The peak age of

infection was six to nine months [7]. Zerr and colleagues

conducted a population-based prospective cohort study

of HHV-6 primary infection in children from birth

through two years of age in Seattle, WA. On the basis

of persistent shedding of HHV-6B DNA in saliva, they

noted a peak incidence of primary infection from nine to

21 months of age among children in the community,

which is slightly older than the ED-based study. This

shift in age of acquisition is also reflected in a 40%

cumulative  incidence of infection by 12 months of age,

but the vast majority of children (77%) still acquired the

virus by 24 months of age [10].

While HHV-6A DNA has been identified in umbilical

cord blood mononuclear cells and in approximately one

third of individuals with ciHHV-6, its role in subsequent

active disease has not yet been established [11]. Clinical

disease in North America, Europe and Asia has almost

exclusively been linked to HHV-6B infection [2]. This

contrasts with one region of sub-Saharan Africa, where

HHV-6A DNA was detected in a majority of infants in an

HIV-1 endemic region [12].

Transmission
The exact modes of transmission of HHV-6 have yet to be

definitely determined. It is presumed that HHV-6 can be

transmitted from the saliva of asymptomatic adults and

older children because of the rapid and reliable trans-

mission of virus to susceptible infants and the lack of

recognized outbreaks [3]. It does seem clear that close

contact is required for transmission, supported by the

observations that having older siblings and parents who

share saliva are associated with virus acquisition, but

attending daycare is not [10,13]. Recently, transmission

of HHV-6 via respiratory droplets has been suggested by

the identification of viral DNA in nasal mucosa and

olfactory bulb specimens. Olfactory-ensheathing cells,

specialized glial cells present in the nasal cavity, are also

capable of being infected in vitro with HHV-6A

suggesting that the olfactory pathway may be a route

of entry of HHV-6 into the CNS [14].

Congenital infection with HHV-6 also occurs in approxi-

mately 1% of newborns [11]. While this rate is similar to

congenital transmission of CMV, 86% of congenital infec-

tions are transmitted via chromosomally-integrated virus

(ciHHV-6) while a minority (14%) is transmitted through

presumed transplacental infection [15]. Chromosomal

integration with germline transmission is a mechanism

unique to HHV-6 and has not been demonstrated for

HHV-7 or any other human herpesvirus. Infants with

ciHHV-6 have measurable HHV-6-specific antibody,

but it is unknown whether this is protective, whether

the virus is actively replicating and the long term effects

of congenitally-acquired HHV-6 [4,15,16�].
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Clinical presentation
Symptoms

The most common finding in children with HHV-6

primary infection is fever (Table 1). Compared to other

febrile illnesses in children under two years of age eval-

uated in an ED setting, HHV-6 infection has been shown

to cause a significantly higher mean temperature (39.6 8C
compared to 38.9 8C), with the great majority of children

exhibiting temperatures greater than 39 8C. In the study

in Rochester NY, fevers remained high for the first three

days with 15% of children remaining febrile for six or

more days. Children with primary HHV-6 infection also

presented earlier into the illness for medical care than

children with other febrile illnesses (2.1 versus 2.9 days)

[7].

While studies from Japan have strongly linked HHV-6 to

the clinical syndrome of roseola, this may be a reflection

of study design and subject inclusion criteria [6,17].

Prospective studies in the US have revealed that the

classic syndrome of roseola accompanies only a minority

of primary HHV-6B infections. The hallmark rash of

roseola was observed in only 6% of the children at initial

presentation when febrile and in another 17% at the time

of defervescence in the study by Hall and colleagues [7].

Similarly, rash was only present in approximately 20% of

children during primary HHV-6 infection in the com-

munity based study in Seattle, WA [10]. This highlights

that roseola infantum is identified in less than a quarter of

children with primary HHV-6 infection in the United

States.

Fever, fussiness and rhinorrhea are present in over half of

children with primary HHV-6B infection while diarrhea,

rash and roseola are all significantly more common during

primary HHV-6B infection than other periods of illness

[10]. Additionally, febrile children with HHV-6B infec-

tion are less likely to present with cough or other symp-

toms of lower respiratory tract infection [7].

Healthcare utilization

HHV-6B primary infection is a common cause of acute

medical care visits accounting for 10% of physician office

visits and 10–17% of acute febrile ED visits in children up

to 36 months of age [7,10,18,19��]. Remarkably, primary

infection has been identified in 24% of children from six

to nine months of age presenting to the ED with an acute

febrile illnesses (Figure 1) [7]. Additionally, children with

primary HHV-6B infection are more likely to present

with signs of serious systemic illness, irritability, and

inflamed tympanic membranes and are commonly diag-

nosed with a presumed serious bacterial infection or otitis

media, often resulting in unnecessary antibiotic use.

Hospitalization due to concern for serious infection has

been documented in one-third of children less than six

months of age with primary infection seen in an ED

[7,18]. These data indicate that acute HHV-6B infection
www.sciencedirect.com
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Table 1

Signs and symptoms associated with primary HHV-6 infection.

Range Vianna

et al. [46]

Zerr et al. [10] Caserta

et al. [43]

Hall et al. [7] Asano

et al. [17]

Pruksananonda

et al. [18]

Year published 1992–2008 2008 2005 1998 1994 1994 1992

Number of subjects 626 97 130 29 160

(1094 evaluated)a
179 34

Inclusion criteria Children

with rash

and/or

roseola

Out-patient

cohort

Children

with fever

Children

evaluated

in the

Emergency

Dept.

Children

with rash

and/or

roseola

Children

evaluated

in the

Emergency

Dept.

% of patients with symptom(s) when reported

Asymptomatic 6 6

Fever (T > 38 8C) 58–98 94 58 100 100 [87 (T > 39)] 98 100 [65

(T > 40)]

Rash (generalized) 18–91 91 31 48 18

Roseola 17–24 24 17

Gastrointestinal

symptoms (general)

3–34 34 30 3

Vomiting 8–21 21 8 21

Diarrhea 24–68 24 26 68 27

Upper respiratory

symptoms

3–41 41 3

Rhinorrhea 56–66 61 66 56

Lower respiratory

symptoms

24 24

Cough 27–62 62 34 27

Cervical adenopathy 31–34 34 31

Pharyngeal papules 65 65

Tonsillitis 29 29

Conjunctivitis 26 26

Acute otitis media/

inflammed tympanic

membranes

8–62 8 30 62

Eyelid edema 30 30

Fussiness/irritability 69–82 70 69 82

Seizures 0–17 1 0 17 13 8 3

Bulging anterior

fontanelle

26 26

Prompted outpatient

visit

39 39

Prompted

hospitalization

13–17 17 13

a None of the additional 582 infants with non-febrile illness evaluated in the Emergency Department or the 352 infants without an acute illness seen in

ambulatory clinics had evidence of primary HHV-6 infection.
is associated with a high level of healthcare utilization.

While the majority of children have a relatively benign

clinical course, the acute clinical presentation may be

concerning to both parents and healthcare providers alike.

Complications

Case reports and small case series have linked primary

HHV-6 infection with a wide range of potential compli-

cations including myocarditis, rhabdomyolysis, thrombo-

cytopenia, Guillain-Barre syndrome and hepatitis/

fulminant hepatic failure [20–22]. Many of these studies

used the presence of HHV-6 DNA in the target organ,

PBMCs, or other body fluids as evidence of active HHV-6

infection. However, detection of viral nucleic acid can

represent active infection, latent infection or ciHHV-6.
www.sciencedirect.com 
While such laboratory studies are not widely available,

active replication of the virus or protein production

should be identified to correlate infection with the clinical

syndrome observed. The absence or presence of HHV-6-

specific antibody can then be used to help determine

whether there is a primary infection or reactivation,

respectively.

Neurologic complications and sequelae
Seizures

Neurologic complications, manifested as seizures or

encephalopathy, have long been associated with roseola.

However, the true prevalence of seizures complicating

HHV-6 primary infection has been difficult to deter-

mine due to the wide variation in study designs and
Current Opinion in Virology 2014, 9:91–96
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Figure 1
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populations. A literature review encompassing studies

from 1994 to 2004 found that 17% of children seeking

medical attention with primary HHV-6 infection had

seizures as a complication [23]. Children from 12 to

15 months of age may be at particular risk with a

documented rate of febrile seizures of 36% among

children presenting to the ED with acute HHV-6B

infection. Overall, primary HHV-6B infection accounts

for approximately 25–33% of the febrile seizures

observed in children less than 24 months of age in

the ED setting [7,24]. Additionally, data from the Uni-

ted Kingdom identified HHV-6B & HHV-7 infection in

17% of cases of suspected encephalitis or severe febrile

seizures in young children [25].

While the majority of febrile seizures are considered to

have a benign clinical course, 5–8% meet criteria for

status epilepticus, and an estimated 5000–10 000 cases

of febrile status epilepticus (FSE) occur annually in the

United States. Febrile seizures are the most common

cause of status epilepticus in previously healthy children,

accounting for over 70% of status epilepticus during the

second year of life [26,27]. The long term consequences

of FSE are still not completely understood. There is a

potential but controversial link to the future development

of intractable temporal lobe epilepsy and hippocampal

sclerosis, which is the most common reason for epilepsy

surgery in adults [28,29]. Recent data from the multicenter

prospective study, Consequences of Prolonged Febrile

Seizures in Childhood (FEBSTAT), has substantially
Current Opinion in Virology 2014, 9:91–96 
expanded our current understanding of FSE [30��]. This

study has provided ongoing detailed evaluation of 200 chil-

dren from ages one month through five years who pre-

sented with FSE in order to study the casual relationship

between FSE and temporal lobe epilepsy. HHV-6 and

HHV-7 virologic studies were performed to determine the

frequency of roseolovirus-associated FSE and to deter-

mine if roseolovirus-associated FSE is more likely to cause

subsequent hippocampal injury and temporal lobe epi-

lepsy. There were 44 cases of primary roseolovirus in-

fection and 14 cases of reactivation as determined by

serology and reverse transcriptase PCR. Together,

HHV-6B and HHV-7 accounted for one-third of the cases

of FSE in the study with HHV-6B causing the majority.

There were no differences in acute temporal lobe (hippo-

campal) injury between children with HHV-6 or HHV-7

infection and those without at the time of infection, and the

subsequent development of hippocampal sclerosis is still

under active investigation. Therefore, while roseoloviruses

may cause hippocampal injury, it appears they may be no

more likely than other viruses to do so during the acute

illness [30��]. HHV-6B has been found in temporal lobe

specimens of patients with intractable temporal lobe epi-

lepsy, but the causal relationship between HHV-6B reac-

tivation and hippocampal injury remains undefined [31–
33].

Encephalitis and other neurologic disorders

HHV-6B reactivation is an established cause of limbic

encephalitis in immune compromised persons following

hematopoetic stem cell transplantation, as initially

described by Wainwright and colleagues [34] ( please refer
to the accompanying review by Zerr and Hill). More recently,

the receipt of cord blood stem cells has been highly

associated with HHV-6 reactivation and encephalitis

[35�,36]. HHV-6B, and rarely HHV-7, primary infection

has also been associated with encephalitis in immune

competent individuals [37]. There appears to be a distinct

geographic distribution, with the highest incidence occur-

ring in Japan. Surveys estimate that 60 cases of roseola per

year are complicated by encephalitis in Japan, making it

the second most common cause of infection-related ence-

phalitis. Severe neurologic sequelae such as acute necro-

tizing encephalitis, hemorrhagic shock and acute

encephalopathy with biphasic seizures complicate nearly

half of those cases [38,39]. Evidence suggests that this

may be a cytokine-mediated disorder [40]. HHV-6B has

also been implicated in triggering potentially fatal neuro-

logic deterioration in children with an underlying mito-

chondrial disorder involving polymerase gamma gene

(POLG) mutations, suggesting that underlying host fac-

tors may contribute to the severity of HHV-6-associated

neurological disease [41].

HHV-7 primary infection

HHV-7 was first isolated from CD4+ lymphocytes in

1990 by Frenkel and colleagues and subsequently found
www.sciencedirect.com
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to be a distinct virus closely related to HHV6-A and

HHV-6B and an additional cause of roseola [42]. Infec-

tion is highly prevalent worldwide and also causes uni-

versal infection in childhood. However, HHV-7 tends to

infect slightly older children when compared to primary

HHV-6B infection. A small case series identified 8 cases

of primary HHV-7 infection out of 250 children present-

ing to the ED with fever. The median age of presentation

was 26 months and only one child was less than 13 months

old. The clinical presentation was indistinguishable from

that of HHV-6B infection, and notably six of the eight

children presented with seizures [43]. Suga and col-

leagues in Japan also found that HHV-7 infection was

comparable to HHV-6 in a slightly older child, although

seizure activity was only observed in one of fifteen cases

of HHV-7 primary infection [44]. While these studies are

relatively small in size, it appears that HHV-7 primary

infection has the potential for severe complications

similar to HHV-6. Recent evidence has also linked

delayed HHV-7 primary infection with severe neurologic

complications, including encephalitis and Guillain–
Barre syndrome [45�].

Summary/research priorities

Primary infection with roseoloviruses is nearly universal

in early childhood. While the majority of infections are

self-limited, the large number of infections coupled with

the characteristic fever leads to significant healthcare

utilization and possible antibiotic misuse. New methods

for sensitive, specific and timely diagnosis of acute in-

fection could potentially mitigate some of the healthcare

expenditures and antimicrobial overuse ( please refer to the
accompanying review on diagnostics by Hill et al.). Addition-

ally, the universal nature of infection with roseoloviruses,

along with the recognition of ciHHV-6, creates unique

challenges in investigating the true burden of disease and

research is most urgently needed to determine method-

ology and criteria for distinguishing a causal relationship

between roseoloviruses and pathology. Although primary

infection has been directly linked to a spectrum of neuro-

logic complications, most notably febrile status epilepti-

cus, the full spectrum of complications and their clinical

burden remain important research questions. The identi-

fication of potential biomarkers to predict individuals at

high risk for complications and the possible benefits of

antiviral treatment in select populations are related

research priorities.
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Diagnosis of Roseolovirus infections mandates careful

selection of patients, samples, and testing methods. We review

advances in the field and highlight research priorities.

Quantitative (q)PCR can accurately identify and distinguish

between human herpesvirus 6 (HHV-6) species A and B.

Whether screening of high-risk patients improves outcomes is

unclear. Chromosomally integrated (ci)HHV-6 confounds test

interpretation but can be ruled out with digital PCR. Reverse

transcription qPCR may be a more specific and clinically

applicable test for actively replicating Roseoloviruses,

particularly among patients with ciHHV-6. Interpretation of

Roseolovirus test results faces many challenges. However,

careful application of refined and emerging diagnostic

techniques will allow for increasingly accurate diagnosis of

clinically significant infections and disease associations.
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Introduction
The Roseolovirus genus of the betaherpesvirus subfamily

is composed of three enveloped, double-stranded DNA

viruses: human herpesvirus (HHV-) 6A, HHV-6B, and

HHV-7 [1]. These viruses share many properties that

include virion structure, genomic sequence, and epide-

miology but have important molecular and biologic differ-

ences [2�]. Like other human herpesviruses, infection with

Roseoloviruses occurs early in life, results in chronic viral

latency in diverse cell types, and affects the population at

large. These characteristics complicate diagnostic efforts to
Current Opinion in Virology 2014, 9:84–90 
determine whether Roseoloviruses are causative in many

implicated diseases. Additional confusion has developed

due to the unique ability of HHV-6A and HHV-6B to

integrate into chromosomal telomeres of infected cells [3]

as reviewed in this issue by Kaufer et al. When this occurs in

a germ cell, vertical transmission of inherited chromoso-

mally integrated (ci)HHV-6 results in offspring with latent

HHV-6 DNA in every nucleated cell of their body. To

further complicate matters, there is evidence that biologi-

cally active HHV-6 can reactivate in individuals with

inherited ciHHV-6 and cause disease [4,5��,6]. This review

highlights important advances in the diagnosis of Roseo-

lovirus infections and provides guidance for application of

current and developing diagnostic methods.

Who to test
Roseoloviruses have been variably associated with many

diseases in diverse patient groups. Primary HHV-6B in-

fection occurs in the majority of children by two years of

age and usually results in a typical presentation of

exanthem subitum (roseola) with mild symptoms in-

cluding fever and rash [7]. HHV-6A and HHV-7 primary

infection have epidemiologic differences in comparison

to HHV-6B but also appear to occur in childhood with

similar presentations [8–10]. Serious complications are

infrequent, although primary infection with Roseolo-

viruses leads to significant healthcare utilization [7],

and HHV-6B or HHV-7 have been associated with

approximately one-third of cases of febrile status epilep-

ticus [11]. Although testing for Roseoloviruses in the

setting of typical exanthem subitum is generally not

indicated, quick and accurate diagnosis could play a role

in stemming antimicrobial overuse, minimizing

unnecessary hospitalization, informing potential utility

of selective treatment, and advancing understanding of

the clinical impact of primary infection (Table 1). Primary

infections are reviewed in detail in this section by Tesini

et al.

The majority of known complications due to Roseolo-

viruses result from HHV-6B reactivation in immunocom-

promised patients, specifically those undergoing

hematopoietic cell (HCT) or solid organ transplantation

(SOT) as reviewed in this issue by Hill and Zerr [12].

Selective testing is important among these patients

(Table 1). HHV-6B and HHV-7 reactivation after

HCT or SOT occurs in 40–50% of patients, whereas

HHV-6A reactivation is infrequent [13–15]. HHV-6A

and HHV-7 do not appear to be important pathogens

in these patients. However, HHV-6B has been associated
www.sciencedirect.com
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Table 1

Summary of key diagnostic considerations for clinical testing of HHV-6Ba

Patient selection Comments
� Primary infection � Rarely results in significant morbidity, routine

testing not indicated but may stem inappropriate

use of healthcare resources

� Reactivation after HCT � Frequent finding with multiple associated

complications, targeted testing indicated

� Other � Selective testing should be considered in

other immunocompromised and immunocompetent

patients with HHV-6B-associated complications

Test selection Strengths Weaknesses

� Quantitative PCR � Sensitive, quantitative, efficient, distinguishes species � Not standardized, detects latent virus

� Digital PCR � Better accuracy and precision, useful for detecting ciHHV-6 � More expensive and labor intensive, detects

latent virus

� Reverse transcription PCR � Positive results represent active replication � More expensive and labor intensive

Sample selection Strengths Weaknesses

� Whole blood, serum, plasma � Easy to access and process � May contain latent virus, not a perfect

surrogate for end-organ disease

� Tissue � Appropriate testing provides stronger evidence for causality � May contain latent virus, difficult to obtain

� Other (e.g. CSF, BALF) � Better surrogate for end-organ disease than blood fractions � May contain latent virus, difficult to obtain

HHV-6, human herpesvirus 6; HCT, hematopoietic cell transplantation; PCR, polymerase chain reaction; ciHHV-6, inherited chromosomally

integrated HHV-6; CSF, cerebrospinal fluid; BALF, bronchoalveolar lavage fluid.
a Testing for HHV-6A or HHV-7 should be considered on a case-by-case basis, as there is little evidence to support any definitive disease association

for either virus.
with many complications in HCT recipients, most nota-

bly central nervous system (CNS) disease [13,16,17].

Accordingly, it is reasonable to test transplant recipients

for HHV-6B in the setting of any end-organ disease and

particularly those with encephalopathy. Although readily

available antiviral medications can abrogate viral reacti-

vation when used as a preventive measure, this has not

resulted in statistically significant improvement in associ-

ated outcomes in a few small studies [18–20]. Whether

routine monitoring for HHV-6 in transplant recipients can

improve outcomes remains unclear [15].

Testing for Roseoloviruses in other patient groups with

findings suggestive of herpesvirus pathogenicity and an

otherwise negative workup should be considered

(Table 1). Ultimately, testing should be ordered judi-

ciously in all settings, and results must be interpreted in

the context of the clinical scenario, sample source, and

possibility of inherited ciHHV-6.

Clinical testing and specimen selection
We again underscore that test and specimen selection for

Roseolovirus testing should be guided by the clinical

context. Direct detection of Roseoloviruses by culture

is considered the gold-standard test for active infection,

but this method is labor intensive, slow, and unsuitable

for routine clinical use [1]. Indirect methods to detect an

immunological response have limited utility for clinical

use [21]. Numerous serologic assays have been described,

including indirect fluorescent-antibody and enzyme-

linked immunosorbent assay. IgM testing is not useful

for clinical diagnosis of primary infection [22], and most

assays are unable to discriminate prior infections with
www.sciencedirect.com 
HHV-6A from HHV-6B, although a recently described

assay appears to enable variant-specific serologic testing

[23]. Current antigenemia tests are inadequate for dis-

tinguishing low-level viral reactivation from clinically

relevant infection [24,25]. Immunohistochemistry and

in situ hybridization are rarely used clinically due to

limited sensitivity and slow turn-around time. Selective

application of DNA testing by polymerase chain reaction

(PCR) assay, however, meets important criteria for

clinical use: it is sensitive, quantitative, and precise; it

can distinguish between species; and it can be efficiently

performed [26�]. Accordingly, PCR for Roseolovirus

DNA has become the mainstay of clinical diagnostics.

We focus our discussion on diagnostic techniques for

HHV-6 species (Table 1).

A variety of qPCR assays for measuring HHV-6 DNA

viral load are in clinical use in laboratories across the world

[26�,27,28]. Well-validated assays target conserved

regions of the HHV-6 genome, and some are able to

differentiate HHV-6A and HHV-6B. Early PCR assays

that used qualitative, nested approaches had high sensi-

tivity but were prone to false-positive results. Quantitat-

ive real-time PCR (qPCR) has emerged as the most

sensitive and rapid method available for clinical diagnosis

of Roseolovirus infection or reactivation. However, inter-

lab quantitative agreement for HHV-6 viral load is poor

[27,29], and there is currently no international standard

available for HHV-6B or HHV-6A. These factors com-

plicate implementation of commutable assays with clini-

cally meaningful viral load thresholds to validate research

findings and guide treatment decisions [30]. The devel-

opment of an international standard, such as the one for
Current Opinion in Virology 2014, 9:84–90
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Table 2

Research priorities

� Study designs that carefully consider patient, diagnostic technique,

and sample selection.

� Standardization of Roseolovirus PCR assays and establishment of

clinically actionable viral load thresholds.

� Development of optimized RT-qPCR assays for HHV-6B mRNA and

correlation with clinically significant HHV-6B-associated diseases.

� Immunologic and tissue-based diagnostics to improve our

understanding of the role of Roseoloviruses in associated diseases.

RT-qPCR, reverse transcription real-time polymerase chain reaction.
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droplet digital PCR assay provides a precise ratio of 1 HHV-6/cell with as

few as 104 cells. Bars represent the mean of two replicate reactions

(denoted by circles).

Source: Reprinted with permission from Clinical Chemistry, Vol. 60 no. 5,

765–772.
CMV made available by the World Health Organization

[31], would greatly improve inter-lab agreement to better

evaluate the association of HHV-6 viral load with associ-

ated diseases (Table 2).

Digital PCR is another method that has recently been

utilized for viral quantitation [32�,33�,34] (Table 1).

Digital PCR uses the same chemistry as real-time qPCR,

but this technique partitions the reaction into thousands

of individual droplets, which are each read as positive or

negative for DNA template. This allows for absolute

quantitation of target DNA without the use of a standard

curve [35]. Digital PCR is particularly well suited for the

identification of inherited ciHHV-6 [36��,37�]. Pre-

viously, ciHHV-6 detection required fluorescence in situ

hybridization, a labor-intensive procedure with limited

availability, or HHV-6 PCR testing of hair follicle cells

[38], an atypical sample type for many molecular diag-

nostics labs. Although HHV-6 DNA levels of >5.5 log10

copies/ml in whole blood samples is suggestive of inher-

ited ciHHV-6, this can occur in the setting of primary

infection or reactivation [3]. A digital PCR assay for

inherited ciHHV-6 has been developed to concurrently

amplify HHV-6 and human ribonuclease P (RPP30, a

reference gene for cell count) DNA; inherited ciHHV-6 is

ruled out if the ratio of HHV-6 DNA to cell genome

equivalents (two RPP30/cell) falls outside a range of

1 � 0.07 (Fig. 1) [36��]. This assay has high sensitivity

and specificity when used with peripheral blood mono-

nuclear cells (PBMCs) and other cellular samples, but it

can also be utilized on study-banked plasma, sera, and

other samples to aid in retrospective research, although

with reduced specificity. Given mounting evidence to

support in vitro and in vivo HHV-6 reactivation from

inherited ciHHV-6 [4,5��,6], adapting this digital PCR

method for high-throughput ciHHV-6 screening of

immunocompromised individuals at high-risk for HHV-

6 reactivation may be important.

Limitations

The use of qPCR to detect Roseolovirus DNA has

important limitations (Table 1). Detection of HHV-6

DNA in serum or plasma appears to correlate well with

indicators of active replication [39]. This may be mis-

leading in some cases, however, as viral DNA may
Current Opinion in Virology 2014, 9:84–90 
originate from latently infected cells that have lysed

during sample preparation [40]. One study found the

specificity of detecting HHV-6 DNA in plasma by qPCR

to be 84% compared with viral culture [41]. PCR detec-

tion of HHV-6 DNA in plasma or serum is particularly

problematic in patients with inherited ciHHV-6 (Fig. 2),

who have a high burden of cell-associated latent HHV-6

DNA that can be released, especially if there is a delay in

sample preparation and testing [38]. Detection of HHV-6

DNA in whole blood or PBMCs does not correlate as well

with active viral replication, as the mononuclear cell is a

site of latency [42]. Results of PCR testing of other

cellular clinical specimens (e.g. tissue biopsies) can be

difficult to interpret for the same reasons.

Additional limitations to consider relate to the use of

HHV-6 DNA detection in fluid samples (e.g. blood speci-

mens, cerebrospinal fluid [CSF], bronchoalveolar lavage

fluid) as a biomarker for end-organ dysfunction (Table 1).

Physicians are increasingly reliant on easy-to-access sur-

rogate markers of disease in an effort to minimize invasive

procedures, such as a biopsy. However, qPCR for HHV-6

DNA is relatively insensitive for this purpose. Although

HHV-6B DNA detection in blood and CSF specimens

appears to occur concurrently with most cases of HHV-

6B-associated CNS disease, viral detection and viral load

thresholds do not strictly predict end-organ disease [43–
45]. HHV-6 DNA in CSF and brain samples may also last

longer than in blood samples [46,47]. In liver transplant

patients with HHV-6-associated graft hepatitis, HHV-6

DNA was infrequently detected in serum [48]. Bronch-

oalveolar lavage fluid with detectable HHV-6 DNA

also appears to be an imperfect surrogate for pulmonary
www.sciencedirect.com
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digital PCR assays for HHV-6 DNA detection.
disease in small studies [49]. Ultimately, PCR for HHV-6

DNA has not provided an ideal means of predicting or

diagnosing clinically significant reactivation and patho-

genicity. Until a better understanding of risk factors,

clinical presentations, and other biomarkers of disease

is developed, alternative diagnostic methods that include

tissue-based and immunologic studies will be important

for defining the role of HHV-6 in associated diseases

(Table 2).

Research methods and future directions
While HHV-6 DNA detection with qPCR provides evi-

dence to support active infection, we have reviewed

multiple confounding factors that limit the sensitivity

of viral DNA detection alone. Research-based methods

of culture, serology, immunohistochemistry, and in situ

hybridization are useful for identifying active infection

and correlating with DNA viral load [50]. However,

adaptation of these techniques to routine clinical diag-

nostics is limited by their complexity, long turn-around

time, and variable sensitivity. Perhaps the most promising

method for definitive clinical diagnosis of active HHV-6
www.sciencedirect.com 
infection is the molecular detection of viral transcripts via

reverse transcription real-time quantitative PCR (RT-

qPCR). This method of amplifying messenger (m)RNA

from PBMCs or other infected cells could provide a better

approach to distinguish active from latent infections [51�],
and it may be particularly useful for identifying HHV-6

reactivation in patients with inherited ciHHV-6.

HHV-6 mRNA detection to identify active infection has

been reported in a few studies to date. An early study that

compared traditional viral culture with a nested RT-PCR

assay for the U100 transcript, expressed during the late

stages of viral replication, determined that the RT-PCR

assay was 95% sensitive and 98.8% specific for actively

replicating virus in PBMC samples [52]. Subsequent

studies developed nested RT-PCR assays for genes in

other stages of the viral replication cycle, including

immediate early genes U16/17 and U89/90 [53], early

gene U79/80 [54,55], late gene U60/66 [53], and

latency-associated gene U94 [56��]. All of these studies

were limited by the use of nested RT-PCR, a sensitive

but qualitative molecular method historically prone to
Current Opinion in Virology 2014, 9:84–90
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false-positive test results. Given these limitations, RT-

qPCR assays that effectively quantitate viral transcript

levels have been developed [51�,57��]. These assays have

targeted immediate early (U90), early (U12), or late

(U100) gene transcripts specifically from HHV-6B and

show promising results regarding correlation of transcript

levels with high-level viremia (>1000 copies/ml DNA)

and viral culture in immunocompetent and immunocom-

promised patients. However, additional steps to optimize

findings (e.g. specific processing and storage of clinical

samples to augment RNA preservation) are required to

further increase sensitivity and standardization. Large

studies that correlate transcript detection with DNA

detection and active disease will be critical to establish

actionable DNA and mRNA transcript thresholds for

treatment. Although additional work is needed to validate

the utility and feasibility of RT-qPCR in the clinical

setting (Table 2), this technique will likely play a bigger

role in routine HHV-6 diagnostics, especially in the

setting of inherited ciHHV-6.

Conclusions
The definitive establishment of Roseoloviruses as causa-

tive pathogens in their many associated diseases is chal-

lenging due to the ubiquity of infection, their latency in a

variety of cell types, the ability of HHV-6A and HHV-6B

to integrate into the human genome, lack of standardized

testing metrics, and poor correlation of current diagnostic

techniques with end-organ disease. While much work has

been done to advance our understanding of the molecular

virology, pathogenesis, and disease associations of these

viruses, additional studies using immunologic and tissue-

based diagnostics will be important to establish the role of

Roseoloviruses in end-organ disease and inform clinically

applicable testing methods. Ultimately, Roseolovirus

detection does not necessarily imply causation, and

interpretation of test results must account for the clinical

context, sample type, and diagnostic technique in order to

formulate valid clinical and scientific conclusions.
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Recent technological advances have led to an explosion in the

system-wide profiling of biological processes in the study of

herpesvirus biology, herein referred to as ‘-omics’. In many

cases these approaches have revealed novel virus-induced

changes to host cell biology that can be targeted with new

antiviral therapeutics. Despite these successes, -omics

approaches are not widely applied in the study of

roseoloviruses. Here we describe examples of how -omics

studies have shaped our understanding of herpesvirus biology,

and discuss how these approaches might be used to identify

host and viral factors that mediate roseolovirus pathogenesis.
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Introduction
Over the past several years, advancements in high-

throughput systems biology approaches and technologies

have resulted in major vertical achievements in the field

of molecular biology. For the purpose of this review,

omics refers to a systems biology approach for defining

the components of a biological system and their inter-

actions with one another. Common examples of -omics

approaches include (but are not limited to) functional

genomics, transcriptomics, metabolomics, and proteomics

(reviewed in [1]). These approaches have been success-

fully applied to several herpesviruses including human

herpesvirus 8 (HHV8; also known as Kaposi’s sarcoma-

associated herpesvirus or KSHV), herpes simplex virus

(HSV), human cytomegalovirus (HCMV) and murid

herpesvirus 4 (MuHV4; also known as murine gamma-

herpesvirus-68 or MHV-68) which are discussed below.

In each case these studies have vastly expanded our
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understanding of the unique biology of herpesvirus-

infected cells. The unbiased nature of -omics studies

has led to a wealth of innovative, testable hypotheses and

identified novel virus-induced changes to host signaling

pathways that impact viral replication and subsequent

pathogenesis. Although genomic and transcriptomic stu-

dies have identified new herpesvirus coding regions and

transcripts, metabolomics and proteomics studies have

defined novel interactions between viruses and host

metabolic pathways and protein complexes. Although

each of these approaches alone provides a wealth of

information, integrating the various -omics approaches

generates a holistic understanding of the host–pathogen

interactome (Figure 1).

By contrast to the other herpesviruses, few if any -omics

approaches have been applied to the study roseoloviruses,

comprised of human herpesviruses 6A, 6B and 7. It is now

feasible to apply most, if not all, of the standard -omics

approaches to the study of roseoloviruses. In this review

we highlight opportunities for -omics approaches to

rapidly advance our understanding of rosoleovirus biology

and describe crucial unmet research needs where -omics

approaches should prove useful.

Functional genomics
Functional genomics encompasses the fields of genome

sequencing, comparative analysis of related genomes, and

screening of phenotypic changes within an organism upon

disruption of a candidate open reading frame (ORF).

Within a decade after the first roseolovirus genome was

discovered in 1986 [2], representative genomes of HHV-

6A, HHV-6B and HHV-7 were sequenced (Accession #s

NC_001664, AF_157706 and U43400 respectively). Since

the original sequencing of these viruses, additional full-

length genomes were reported [3–7]. Due to distinct

characteristics of these viruses including cellular and

tissue tropism, genomic arrangement, peptide coding

capacity and subsequent pathogenesis [8,9], each of these

roseoloviruses are classified as separate viruses [10].

These studies were the first examples of an -omics

approach in the study of roseoloviruses. In silico analyses

revealed roseolovirus coding regions conserved across

herpesvirus families, conserved amongst roseoloviruses,

and most importantly, those unique to each roseolovirus

[3–5]. For many roseolovirus genes, putative functions

were inferred based on homology to orthologous herpes-

virus genes of known function. In addition these analyses

allowed for focus on novel ORFs that may be involved in

distinct roseolovirus pathogenesis. These studies pro-

vided the first insights into the organization and potential

functional capacity of roseoloviruses.
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Schematic representation of high throughput system-wide analyses of

roseolovirus pathogenic potential. The above is a listing of several

available ‘-omics’ analyses that are suited for profiling the impact of

roseolovirus infection on host cells.
Subsequent functional genomics studies have predomi-

nantly employed reverse genetics approaches, identifying

phenotypic changes resulting from mutation or deletion

of a specific viral ORF. These studies have almost exclu-

sively focused on HHV-6A, as it is the only roseolovirus

genome that has been cloned into a bacterial artificial

chromosome (BAC) [11] and is therefore applicable to

genetic manipulation. Examples of reverse genetic

approaches in roseoloviruses include defining the role

of viral glycoproteins in replication [11], and confirming

the role of homologous genes conserved across the her-

pesvirus family [12].

Several additional functional genomics approaches have

been successfully used in other herpesviruses and are

amenable to the study of roseoloviruses. Although only a

handful of roseolovirus genomes have been sequenced,

multiple full-length genome sequences are available for

many other human herpesviruses. Comparison of the

coding capacity of multiple strains has led to a better

understanding of both virus evolution and replication

[13]. An excellent example is HCMV, where clinical

strains were found to contain approximately 15 kb of

DNA that is deleted or inverted during laboratory passage

thereby altering the growth and tropism of these strains

[14]. Only upon additional sequencing of clinical isolates

was it found that these alterations resulted in the loss-of-

function of cytomeglaovirus genes essential for viral

latency [15]. Presumably roseoloviruses display a similar

degree of heterogeneity, however this hypothesis has not

been tested. The widespread availability of next gener-

ation sequencing coupled with advances in genome

analysis and assembly makes this an attractive area for

future roseolovirus studies.
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Forward genetics approaches have also proven useful in

defining novel functions for herpesvirus genes. Forward

genetics refers to the process of screening random

mutants for a specified phenotype. Subsequent genotyp-

ing of the selected variants then reveals the underlying

gene (or genes) controlling the phenotype. Many herpes-

viruses including HCMV, HSV1, and MuHV4 have used

genome-wide forward genetics studies to characterize

viral genes. Libraries of expression vectors containing

herpesvirus ORFs have proven useful in forward genetic

screens to identify novel functions for viral genes, in-

cluding antagonism of the host antiviral response [16] and

manipulation of the cell cycle [17]. In addition, global

mutagenesis approaches have identified genes in MuHV4

[18], MCMV [19] and HCMV [20,21] needed for efficient

virus replication. A global determination of the comp-

lement of HHV-6A coding regions required for replica-

tion should be employed to identify novel targets for

antiviral drugs. Similarly, a comprehensive collection of

expression vectors for roseolovirus genes would allow for

the identification of viral genes that contribute to unique

aspects of the roseolovirus life cycle, for example genome

integration. Although HHV-6A, -6B and HHV-7 genomes

have each been annotated, the field is hampered by a lack

of BAC constructs for HHV-6B and HHV-7, thus making

the essential development of forward genetics screens

currently unavailable.

Transcriptomics
The most common, and often first employed, analysis of

viral infection is monitoring changes in both viral and

cellular transcription. High throughput qualitative profil-

ing of transcript changes often relies on microarray tech-

nologies where one can monitor literally thousands of

cellular transcripts or complete annotated viral transcripts

in a single experiment. This technology has been used

successfully to study the kinetics of both HHV-6A and

HHV-6B transcription [22,23]. This powerful resource is

important for identifying the timing and relative levels of

transcription from the viral genome. However, this meth-

odology lacks absolute quantification and is biased toward

regions of the genome that are previously known to be

transcribed, as predefined probe sets are used as bait for

transcripts. Next generation sequencing approaches can

be used to address these deficiencies. These approaches

allow for the unbiased profiling of both cellular and viral

transcripts at saturating levels, thereby providing insight

into both the absolute levels of transcripts and also

transcript structure (reviewed in [24]). Although RNA

based deep sequencing has identified roseolovirus tran-

scripts in a few patient samples [25,26], and RNA based

deep sequencing has been used to identify small non-

coding RNAs encoded by HHV-6B [27], a targeted

approach to define roseolovirus mRNAs in a controlled

infection has surprisingly not yet been performed. Such

an approach would likely refine our understanding of the
Current Opinion in Virology 2014, 9:188–193
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temporal expression of rosoleovirus genes, and potentially

identify novel coding regions of the viral genome.

Alternative approaches to next generation RNA sequenc-

ing have been used with success for other herpesviruses

including reverse transcriptase coupled real time quanti-

tative PCR (RT-qPCR) whole genome panels (e.g. [28])

as well as the use of tiled arrays (e.g. [29]). The use of a

tiled array for the related herpesvirus MuHV4 allowed for

highly reproducible quantitative and qualitative resol-

ution (20nt) of viral transcription during both lytic repli-

cation and reactivation from latency [29]. In this study,

not only were the kinetics of viral transcription assessed

but the authors identified a previously undefined ORF

that was not characterized by in silico analysis, under-

scoring the need for multiple -omics approaches for

roseolovirus studies. Each of these above mentioned

technologies are readily applicable and necessary for

understanding the viral lifecycle of roseoloviruses and

thus should be prioritized.

Proteomics
Proteomics concerns the large-scale study of structure,

modification, function and abundance of proteins. Once a

rarity, proteomics approaches have become increasingly

common in the study of herpesviruses, specifically in

defining viral protein function. Many herpesvirus

proteins bear little or no homology to cellular proteins,

limiting the ability to infer functional roles based on

amino acid sequence conservation. However defining

the interacting partners for viral proteins in the context

of infection is an effective means for identifying potential

functional roles. Typically this approach involves gen-

erating a virus strain in which the protein of interest is

fused to an epitope tag. The ‘tagged’ viral protein is then

affinity purified from infected cells lysates, and the

associated host and/or viral proteins are identified by

mass spectrometry [30]. This approach has been used

successfully to define novel functions for numerous

herpesvirus proteins (e.g. [31–33]), although it has yet

to be extended to the study of roseolovirus protein

functions.

A related approach can be used to identify changes in

post-translation modifications (PTMs) of host and viral

proteins during infection. Antibodies to a specific PTM

are used as an affinity reagent, and the resulting immune

complexes are analyzed by mass spectrometry. This

approach is especially useful in defining changes in sig-

naling pathways caused by infection. For example, phos-

pho-proteomic analysis of MuHV4 infected cells

identified virus-induced changes to multiple cellular sig-

naling pathways [34], several of which are important for

efficient virus replication. These approaches are easily

extendable to the study of HHV6A, as a genetically

tractable BAC clone exists as well as an efficient in vitro
lytic replication model.
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Quantitative whole cell proteomics (qWCP) is another

approach used to identify changes in host protein expres-

sion during viral infection. qWCP approaches most com-

monly use a mass spectrometer to identify either relative

or absolute quantities of proteins in cell lysates under

different conditions. Both relative and absolute qWCP

approaches are standardized, and we direct the reader to

several method and review articles for additional details

[35,36]. A modification of qWCP has also been developed

that defines changes in cell surface proteins during in-

fection [37]. More recently whole cell proteomics coupled

with transcript analysis has been used to identify and

quantify the temporal expression of known and novel

viral proteins [38]. These studies have revealed that

herpesvirus proteomes are far more complex than pre-

viously appreciated. Given the impact of proteomics on

our understanding of herpesvirus protein function and

genome complexity, applying these approaches to the

study of roseoloviruses should rapidly increase our un-

derstanding of these complicated pathogens.

Metabolomics
Another -omics approach applied to the study of herpes-

virus biology is metabolomics. The goal of metabolomics is

to measure the abundance of all metabolites in a cell.

Viruses are obligate intercellular pathogens that are

directly reliant on host cell metabolites for anabolic pro-

cesses; therefore herpesviruses must manipulate metabolic

processes to support virus replication. Most metabolomics

approaches utilize mass spectrometry to quantify a large

number of metabolites from a single sample (reviewed in

[39]). Comparing the abundance of specific metabolites in

virus-infected cells to that of mock-infected cells reveals

crucial virus-induced metabolic changes. Alternatively

virus-induced changes to the rate of metabolism can be

quantified by measuring the conversion of isotopically-

labeled precursor metabolites such as glucose or glutamine

into downstream metabolites.

Both approaches have been used to characterize how

herpesvirus infection modulates metabolism. For example,

both HHV-8 and HCMV increase aerobic glycolysis and

stimulate fatty acid synthesis, reminiscent of the metabolic

changes observed during oncogenesis [40–42]. By contrast,

HSV1 preferentially increases glucose metabolism by the

pentose phosphate pathway, presumably to generate suffi-

cient nucleotides for viral DNA replication [43]. Fatty acid

synthesis inhibitors limit HCMV replication [44] and the

growth of primary effusion lymphomas associated with

HHV-8 infection [45], and inhibitors of nucleotide metab-

olism decrease HSV1 replication [46]. Therefore it is

proposed that virus-induced changes in metabolism are

promising targets for new antiviral therapeutics [47].

Based on the crucial role for metabolic remodeling in

the lytic replication cycle of other herpesviruses, we

hypothesize that roseoleviruses modulate host metabolic
www.sciencedirect.com
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pathways in similar yet distinct ways to support efficient

virus replication. Uncovering mechanisms of virus-

induced metabolic remodeling will likely result in new

targeted therapeutic interventions directed at roseolo-

viruses. Unfortunately almost nothing is known of the

effects of roseolovirus infection on host cell metabolism.

As such, current drugs used to treat roseolovirus infections

are based solely on inferred functions putatively shared

with other herpesviruses [48]. Although defining new viral

functions to target with novel antivirals will likely require

much effort, virus-induced changes in metabolism should

be relatively straightforward to define. Therefore metabo-

lomics analyses of roseolovirus infections present a prom-

ising direction in the identification of new therapeutics to

limit roseolovirus pathogenesis.

Unmet needs
Although we have described different -omics applications

that are accessible to roseolovirus researchers, we, as a

field, lack several resources needed to advance our un-

derstanding of roseolovirus biology to the level of its

herpesvirus cousins. For HHV-6B and HHV-7, the lack

of an infectious BAC clone is perhaps the most significant

barrier to -omics approaches. The absence of HHV-6B

and HHV-7 BAC clones severely limits our ability to

perform both forward and reverse genetic screens to

define the complement of viral factors important for

roseolovirus disease. The BACs would also provide a

convenient starting point to generate a library of expres-

sion vectors for roseolovirus ORFs. This library would be

a high value resource for forward genetics screens, such as

screens to identify viral proteins that regulate the innate

and adaptive immune response. This is arguably the most

significant roadblock to roseolovirus research.

We also lack a sufficient understanding of genetic diversity

amongst roseoloviruses. A functional genomics analysis of

circulating roseolovirus strains in distinct patient popu-

lations or locations would likely prove invaluable for iden-

tifying viral pathogenesis determinants. In addition such

an analysis would facilitate the development of roseolo-

virus diagnostics. Current PCR-based diagnostics for the

assessment of viral load in patient samples vary greatly in

sensitivity between laboratories [49]. This may reflect

differences in the primers used for detection, methods

of nucleic acid isolation and/or the choice of standardiz-

ation protocols. However strain variability across different

geographical regions could also account for these discre-

pancies. A thorough genomics analysis of strain variation

for each roseolovirus would provide the starting point for

the development of diagnostics targeting invariant regions

of roseolovirus genomes. These data would also allow for

the generation of suitable reference strains that are needed

to standardize diagnostic assays.

The ability to efficiently map viral transcription in a tissue

or viral lifecycle specific manner is crucial to understanding
www.sciencedirect.com 
how these viruses grow and cause disease. Due to the

reproducibility, low cost, high sensitivity and high

specificity of tiled arrays [50], development of virus-

specific arrays for HHV-6A, HHV-6B and HHV-7

should be prioritized. The production and use of tiled

arrays is a standard commodity at most institutions and

offers a unified platform for transcript characterization

and quantification. In addition RNA-Seq and other next

generation sequencing approaches can identify novel

coding regions [51], small RNAs [52,53] and/or splice

junctions [54] in herpesvirus genomes that may expand

the roseolovirus proteome. A combinatorial transcrip-

tomic approach is a priority for defining the coding

capacity and regulatory regions of roseolovirus gen-

omes.

As with functional genomics, the ability to perform

directed proteomics experiments to define the function

of HHV-6B and HHV-7 proteins is severely hampered by

the lack of infectious BAC clones. However such

approaches should be easily applicable to the study of

HHV-6A, as the necessary genetic system exists and the

required reagents are commercially available. In addition,

mass spectrometry core facilities capable of producing and

analyzing the data from proteomics experiments are com-

mon at most research institutions. As with transcriptomics,

a combination of proteomics approaches is needed to

define novel viral coding determinants and their functions

in order to identify new targets for antiviral drugs.

Although metabolomics is less common than other -omics

approaches in the study of herpesviruses, metabolomics

has already identified virus-induced metabolic changes

that can be targeted with drugs. Metabolic perturbations

underlie several disease states, and the development of

drugs that regulate metabolism is an active area of clinical

research. In some cases, metabolomics studies have

suggested that currently approved drugs have been found

to have novel antiviral activity [47], potentially speeding

translation of these findings into the clinic. Metabolomics

approaches should be relatively straightforward and thus

should be prioritized.

The rapid development of -omics approaches over the

last ten years has greatly changed our view of herpesvirus

biology. As described above, many standard -omics

approaches can be easily adapted for roseolovirus

research, although for studies of HHV-6B and HHV-7

some hurdles still remain. The lack of -omics approaches

to date in roseolovirus research as a whole presents an

opportunity for researchers to coordinate an integrated

and highly targeted -omics analysis of these clinically

important human pathogens.
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